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ABSTRACT 

Parkinson’s disease (PD) is a common neurological disorder 

characterized by gait impairment. PD has no cure, and an 

impediment to developing a treatment is the lack of any accepted 

method to predict disease progression rate. The primary aim of 

this study was to develop a model using clinical measures and 

biomechanical measures of gait and postural stability to predict 

an individual’s PD progression over two years. Data from 160 PD 

subjects were utilized. Machine learning models, including 

XGBoost and Feed Forward Neural Networks, were developed 

using extensive model optimization and cross-validation. The 

highest performing model was a neural network that used a group 

of clinical measures, achieved a PPV of 71% in identifying fast 

progressors, and explained a large portion (37%) of the variance 

in an individual’s progression rate on held-out test data. This 

demonstrates the potential to predict individual PD progression 

rate and enrich trials by analyzing clinical and biomechanical 

measures with machine learning. 

Index Terms—Parkinson’s Disease, Prognosis, Machine 

Learning, Biomechanical Measures, Progression Rate 

 

 

1. INTRODUCTION 

Parkinson’s Disease (PD) is the second most common 

neurodegenerative disease after Alzheimer’s disease, with 

60,000 new PD diagnoses made annually resulting in a 

prevalence estimate by 2020 in the USA of 930,000 people 

[1]. PD is characterized by a progressive loss of 

dopaminergic neurons, resulting in resting tremor, limb 

stiffness, and bradykinesia, which often manifests early on 

with a reduction in arm swing amplitude when walking. 

The primary aim of this study was to develop a model using 

clinical and biomechanical gait and postural stability 

measures capable of identifying fast PD progressors with a 

high Positive Predictive Value (PPV). Achieving this goal 

will allow enrichment of future disease-modifying drug 

trials with fast progressors who are most likely to show 

detectable changes during a trial. Gait and postural stability 

measures were chosen as independent variables for our 

models because they have been previously found to be 

predictive of PD risk, disease severity, Freezing of Gait 

detection, and PD diagnosis [2–6]. While their potential for 

indexing PD progression has been suggested before [7–10], 

to our knowledge no study has used machine learning to 

predict future PD progression using these measures. 

Baseline clinical measures were also investigated because 

of the potential they have to be predictive of PD 

progression rate. The most closely related study is by 

Latourelle et al. [11], where the predictive power of a 

composite biomarker set consisting of genetic, CSF, 

DaTscan, clinical and demographic features was examined. 

In contrast, our work examines the predictive power of 

gait, postural stability, clinical and demographic features.  

The main contributions of this study are: (1) the 

development of a predictive model of an individual’s PD 

progression rate that achieves a high PPV in identifying 

fast progressors suitable for enrichment of clinical trials to 

help expedite the development of a cure, and (2) the first 

machine learning models that demonstrate prediction of 

PD progression rate using gait and postural stability 

measures.  

 

2. MATERIALS 

Data were analyzed from 160 subjects with idiopathic PD 

followed longitudinally for 2 years. The subjects were part 

of the multi-year NIH-NINDS funded Parkinson’s Disease 

Biomarkers Program (PDBP) [12]. Patient demographics 

are shown in Table 1. Disease severity was measured using 

the Movement Disorder Society revision of the Unified 

Parkinson’s Disease Rating Scale (MDS-UPDRS). The 

MDS-UPDRS is a four-part assessment of PD severity as 

Table 1 Demographics for 160 PD patients in the dataset 

Demographic Value 

Age 64.5 ± 9.5 

Men 54% 

Baseline MDS-UPDRS part III score 16.0 ± 7.9 

2 year MDS-UPDRS part III score 18.2 ± 7.6 

On any PD medication 84% 

On levodopa 63% 
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measured by a trained examiner. Part III of the assessment 

corresponds to the motor examination and involves 18 

sections which are each scored on a scale from 0 (normal) 

to 4 (severe). Examples of sections include speech, facial 

expression, and gait examinations. Some sections have 

subsections for each hand (LH, RH) or for each upper and 

lower extremity (RUE, LUE, RLE, LLE). The total part III 

score has a range of 0 to 132. For this dataset, a trained and 

MDS certified examiner with eight years of prior 

experience conducted the assessments. 

 

3. METHODS 

Three targets for regression were tested individually in the 

following experiments: (1) total part III score at 24 months, 

(2) 24 months-baseline change in part III, and (3) percent 

change in part III measured as (24 months-

baseline)/baseline. These targets were chosen as it was not 

known a priori whether absolute severity or a change in 

severity is a more predictable target. The progression of the 

total part III score over two years is shown in Fig. 1. A 

paired t-test revealed that the mean score at 24 months was 

statistically different from that at baseline (p < 0.01) while 

the mean scores at previous visits were not, indicating that 

24 months is the first point at which significant progression 

is observed. The variability of scores across subjects 

exemplifies PD heterogeneity and indicates the highly 

challenging nature of the task of predicting individual 

progression rate.  

For the gait and posture measures, six movement sensors 

called Opals® consisting of a 3-axis accelerometer, 

gyroscope and magnetometer (Mobility Lab, APDM Inc., 

Portland, OR) were attached to each subject: one on each 

ankle and wrist, the lower back, and the upper chest, as we 

described in Dewey et al. [6]. 

The tasks were: 

1. The instrumented Timed-up-and-go (iTUG) test: 

subjects stand up from a chair, walk 6 meters, 

turn, walk back and sit down. Note that this 

extends the traditional 3 meter TUG task in order 

to capture more gait cycles [13]. This test gave 

measures such as duration of subtasks (sit-to-

stand, steady-state gait, turn, and turn-to-sit), gait 

speed, and arm-swing velocity. 

2. The instrumented Sway (iSway) test: subjects 

stand still with their feet a set distance apart and 

their hands across their chests for 30 seconds. 

This gave measures such as jerk, sway area, and 

mean velocity. 

Three runs of iTUG and iSway were conducted at each visit 

and the median values of 148 summary statistics computed 

by the APDM software were utilized. Clinical measures 

were used including: age, gender, baseline MDS-UPDRS 

part III subscores, Levodopa Equivalent Daily Dose 

(LEDD), and MOntreal Cognitive Assessment (MOCA) 

score.  

 

3.1 Feature set construction and feature selection: 

Seven sets of features were compared for predictive power, 

encompassing different combinations of iTUG and iSway 

summary statistics, clinical measures, and additional 

derived features (Fig. 2). These included a set with the 

baseline iTUG and iSway measures (which we refer to as 

BaseG, short for baseline gait) and a set of derived features 

with the difference between iTUG and iSway measures at 

6 months and at baseline (DeltaG, i.e. delta gait), which 

capture progression of motor symptoms. Asymmetric 

presentation of motor dysfunctions in PD has shown to be 

an important marker of PD severity [14], so asymmetry 

measures on the 22 lateralized variables in baseline 

(AsyBaseG) and 6 months-baseline iTUG and iSway 

(AsyDeltaG) were computed with the formula                               

1 −
𝐿𝑒𝑓𝑡 𝑚𝑒𝑎𝑠𝑢𝑟𝑒

𝑅𝑖𝑔ℎ𝑡 𝑚𝑒𝑎𝑠𝑢𝑟𝑒
. All of these iTUG and iSway measures 

were combined in feature set AllG, i.e. all gait measures. 

Clinical measures were considered by themselves (Clin) 

and in combination with all iTUG and iSway measures 

(AllGClin, i.e. all gait and clinical measures). Feature 

selection was conducted on the training partitions by 

Figure 1 Progression of MDS-UPDRS part III score across 

24 months. Individual subjects plotted as grey lines. Mean 

and standard deviation across subjects plotted in red. Zoomed 

view on right shows increasing severity longitudinally. 

Figure 2 Feature set combinations explored. Number of 

features in each set indicated in parentheses. Abbreviations 

for feature sets in column headers.  
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dropping one member of each pair of highly intercorrelated 

features (Pearson’s r > 0.8) to minimize feature 

redundancy.  

3.2 Data partitioning and model training: XGBoost and 

Feed Forward Neural Network (NN) models were chosen 

as they are two of the most powerful models that 

consistently win machine-learning competitions for 

structured and unstructured data and have shown high 

performance in a wide range of tasks [15]. Mean-squared-

error loss was used to train the NNs. Model performance 

was evaluated using the R2 score, i.e., the coefficient of 

determination. The dataset was partitioned using nested K-

fold cross validation with 3 inner and 3 outer folds. In each 

outer fold, mean R2 across the held-out partitions of the 

inner folds was used to rank model performance and the 

model with the highest mean R2 was selected for evaluation 

on the held-out partition of the outer fold. The mean test 

performance over the held-out partitions in the 3 outer 

folds represents final model performance. Stratified k-fold 

partitioning was used to ensure representative target 

distributions across splits and appropriate model training 

and evaluation. 

3.3 Hyperparameter optimization and model selection: 

To identify optimal model hyperparameters in an unbiased 

manner, a random search of 1000 hyperparameter 

configurations for XGBoost and 300 configurations for 

NNs was conducted. Fewer configurations were searched 

for NNs due to computational requirements. The 

hyperparameter dimensions and ranges searched are shown 

in Table 2. The best-performing hyperparameter 

configurations were selected based on mean R2 across the 

inner cross-validation folds, and the model’s performance 

is evaluated as the mean R2 evaluated on the held-out test 

splits. Hyperparameter vs. performance plots [not shown] 

confirmed that sufficient ranges of the hyperparameters 

was searched such that the local maxima of performance 

were found. 

3.4 Feature importance: To reveal what the NNs learned, 

feature permutation importance was used to compute 

feature importance. Each feature in the held-out test set was 

randomly permuted 100 times and the decrease in R2 was 

measured, with a greater mean decrease reflecting greater 

importance.  

4. RESULTS 

The mean test R2 performances of the best models on each 

feature set × target combination are shown in Fig. 3. NNs 

outperformed XGBoost models in every case. The feature 

set Clin, which used only the clinical measures, achieved 

the highest R2 across all prediction targets and model 

categories. Using this feature set, 37% of the variance was 

explained in the percentage change MDS-UPDRS part III 

score.  

Table 2 Hyperparameter ranges explored for each model. 

XGBoost 

Number of estimators: [10, 1000] 

Maximum depth: [5, 50] 

L1 regularization term: (0, 1) 

L2 regularization term: (0, 1) 

Learning rate: [0.0001, 0.4] 

Feed Forward Neural Network 

Layers: [1, 5] 

Chance to taper: 50% 

Taper size: {0.2, 0.5} 

Dropout: [0.1, 1.0] 

Activations: {ReLU, ELU, LeakyReLU, PReLU, tanh, sigmoid} 

Number of neurons: {16, 32, 48, 64, 80, 96, 112, 128} 

Learning rate: [0.0001, 0.005] 

Optimizer: Nadam 

 

Figure 3 Mean test R
2
 performances of best models on each feature-target combination. Feature sets are shown on the x-axis and targets are 

shown on the y-axis. The color bar indicates R
2
, with brighter green indicating better performance and black indicating 0 or negative R

2
 

performance.  
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Given that predicting progression rate is a difficult problem 

as indicated by the large standard deviation of ± 8 points in 

the progression rate across subjects, explaining nearly 40% 

of the variance in progression rate using our model is a 

significant finding. This result is comparable to the 41% 

validation performance achieved by Latourelle et al. [11], 

and has the added strength that our evaluation is on held-

out test data while theirs was on validation data which 

typically inflates the result. Our model achieved a PPV of 

71% in identifying fast progressors, defined as having a 

20% or more increase in MDS-UPDRS part III score from 

baseline (top 50% of the cohort).  

This is also the first study to use machine learning to show 

gait and postural stability measures to be predictive of PD 

progression. Three of the gait and postural stability feature 

sets explained 10% or more of the variance in the 2 year 

MDS-UPDRS part III score. Feature set AllG, which 

included all the derived gait and postural stability 

measures, explained 21% of the variance.  

The 10 most important features learned by NNs on sets 

Clin and AllG are shown in Fig. 4. The MDS-UPDRS part 

III RUE rigidity subscore, total score, and Right Hand 

Finger Tapping subscore were the three most important 

features for predicting percent change (Fig. 4A). In the 

AllG feature set, the (6 months-baseline) iTUG asymmetry 

values ranked high in feature importance, with the iTUG 

gait stride velocity asymmetry change as the most 

important for predicting the 2 year score (Fig. 4B). 

4. DISCUSSION 

The best model performance was obtained using clinical 

measures to predict the 2 year percent change MDS-

UPDRS part III score with an NN. The model explained 

37% of the variance in the target, with a PPV of 71% in 

identifying fast progressors. Thus, the model may be useful 

in enriching disease-modifying drug trials with fast 

progressors. Similar to Latourelle et al. [11], baseline 

movement scores from Clin are found to be among the 

most important features for predicting future progression 

rate.  

For the gait and posture measures, the (6 months-baseline) 

iTUG asymmetry values ranked high in feature 

importance, indicating that the progression of asymmetric 

aspects of gait impairments are especially important for 

predicting PD progression. This demonstrates the 

prognostic value that can be provided by improved 

measurements of motor disability in PD subjects. While the 

gait and postural stability measures alone in AllG 

performed modestly (R2=0.21), their performance was 

bolstered by the inclusion of clinical measures in AllGClin 

(R2=0.30). However, this performance boost was not 

additive, suggesting that the feature sets have collinearities 

and measure similar aspects of PD progression.  

 

The primary limitation of this study is that a single dataset 

was used. Though the dataset was fairly large (N=160 

subjects) and rigorous cross-validation was performed 

including a held-out test set not used for training or model 

selection, a replication study on an independent dataset 

would further confirm our findings. Fortunately, other 

datasets are becoming available and replication of our 

model’s performance on these datasets is the subject of our 

ongoing research. Additional future studies are planned to 

increase predictive power using other methods to derive 

features from the iTUG and iSway sensor data. Such 

deeper analysis may enable even more prognostic 

applications. 

5. CONCLUSION  

The main contributions of this study include the 

development of a predictive model of an individual’s PD 

progression rate that achieves a 71% PPV in identifying 

fast progressors, which is suitable to enrich clinical trials 

to help expedite the development of a cure for PD. This 

work reaffirms the importance of clinical measures in 

predicting PD progression and suggests the potential for 

gait and postural stability measures as a predictive tool. 
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Figure 4 Mean feature importance of the top 10 features 

learned by the best performing NNs. A) Top features using 

feature set Clin to predict the percent change in MDS-

UPDRS part III and B) Top features using feature set AllG to 

predict 2 year MDS-UPDRS part III score. Error bars show 

the standard deviation across the outer splits. The “_del6mo” 

suffix indicates a 6 months minus baseline value. 

A)          B) 
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