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Abstract 

The effect of repetitive sub-concussive head impact exposure in contact sports like American football on brain 

health is poorly understood, especially in the understudied populations of youth and high school players. These 

players, aged 9-18 years old may be particularly susceptible to impact exposure as their brains are undergoing rapid 

maturation. This study helps fill the void by quantifying the association between head impact exposure and 

functional connectivity, an important aspect of brain health measurable via resting-state fMRI (rs-fMRI). The 

contributions of this paper are three fold. First, the data from two separate studies (youth and high school) are 

combined to form a high-powered analysis with 60 players. These players experience head acceleration within 

overlapping impact exposure making their combination particularly appropriate. Second, multiple features are 

extracted from rs-fMRI and tested for their association with impact exposure. One type of feature is the power 

spectral density decomposition of intrinsic, spatially distributed networks extracted via independent components 

analysis (ICA). Another feature type is the functional connectivity between brain regions known often associated 

with mild traumatic brain injury (mTBI). Third, multiple supervised machine learning algorithms are evaluated for 

their stability and predictive accuracy in a low bias, nested cross-validation modeling framework. Each classifier 

predicts whether a player sustained low or high levels of head impact exposure. The nested cross validation reveals 

similarly high classification performance across the feature types, and the Support Vector, Extremely randomized 

trees, and Gradboost classifiers achieve F1-score up to 75%.  

1. INTRODUCTION 

Understanding the effects of repetitive sub-concussive head impacts in youth (ages 9-13), high school (ages 14-19) 

football players on brain development is of growing concern, and yet the association is challenging to understand. 

Players sustaining a concussion frequently complain of sensitivity to visual stimuli. Therefore, we hypothesized that 

the visual networks would contain discriminatory information. Recently, Zhu et al  [1] demonstrated the ability of 

functional connectivity of the default mode network (DMN) to serve as a potential biomarker to monitor dynamic 

changes in brain function after sports related concussion [2]. There is increasing evidence that the hippocampus, a 

core region for human memory, should be included in the DMN. Since traumatic brain injury (TBI) often compromises 

memory we also hypothesized that the DMN would have telltale features that characterize injury level [3].  

In this study we included subjects from both high school and youth and studied the changes in the power spectrum of 

the resting state networks and the functional network connectivity between AAL regions of DMN, Hippocampal and 

Visual regions to differentiate high impact exposed players form those who are expose to light impact. The accuracy 

of our classification is an indicator of the level of association and the features used by the classifier reveal the aspects 

of functional brain connectivity most effected from the exposure.  
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2. MATERIALS AND METHODS 

2.1 Combining youth and high school datasets and player selection 

The data used in this research is part of IRB-approved iTAKL [4] studies on the effect of repetitive sub-concussive 

head impacts in youth and high school football players. In each study, players were instrumented with Head Impact 

Telemetry System (HITS) [5] during all practices and games. In this system, accelerometers are mounted inside the 

helmet to measure skull acceleration. The risk of concussion from each impact, was computed from the combined 

probability of concussion from measured linear and rotation accelerations [6]. The risks from each impact are summed 

to compute each football player’s Risk of concussion-Weighted cumulative Exposure (RWECP) for the season. The 36 

players with lowest impact exposure (mean RWE=0.65 ± 0.03) and the 24 subjects with highest impact exposure 

(mean RWE=1.91 ± 0.67) out of total 138 subjects were selected to study the effect of subconcussive head impact 

exposure on brain connectivity (Fig.2). Resting state fMRI (rs-fMRI) was acquired on a Siemens 3T scanner. The rs-

fMRI scans were acquired with an echo planar sequence covering the entire brain (FOV = 224 x 224 mm, flip angle 

= 90 deg, TR = 2 sec, TE = 25 msec) over a 6-minute period before and after the season for each player. The 

participants were instructed to keep their eyes open and cross hair fixated. The fMRI data was preprocessed using an 

in house developed processing pipeline that includes steps for motion correction, spatially smoothing and spatial 

normalization to a common atlas space (MNI) in order to facilitate group ICA. 

 

Figure 1: A) Processing steps including preprocessing, feature construction and classifier training. B) 

Intrinsic resting state networks  

 

 Figure 2: Distribution of Risk Weighted cumulative Exposure from combined probability (RWECP) 
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2.2 Construction of resting state network features 

Two types of features were constructed. For the first type, thirty independent components were extracted from the 

pre- and post-season rs-fMRI data using temporal concatenation group ICA using the InfoMax algorithm (GIFT 

toolbox [7]). The subject specific time course of three components of DMN including the posterior and frontal 

DMN, and posterior cingulate cortex (PCC) and Visual Medial were converted to their power spectrum through 

power spectral density decomposition. This formed four network specific features: Posterior DMNPSD, Frontal 

DMNPSD, PCCPSD and VMPSD. This frequency-based representation is invariant to phase and facilitates inter-

subject comparison of non phase locked, time based activity, which characterizes resting state experiments. The 

difference of the discrete (binned) PSD vectors, post-season minus pre-season, was calculated for baseline 

correction, Fig 3(left). This allowed us to focus on functional changes in a single season of football. 

For the second feature type, a mean fMRI activation time series was extracted from gray matter voxels that comprise 

the DMN, Visual Network and the hippocampus. The DMN regions included L&R inferior parietal lobule, L&R 

medial orbitofrontal cortex, L&R posterior cingulate cortex, L&R superior frontal gyrus.  The visual medial regions 

included L&R superior occipital gyrus, L&R middle occipital gyrus, L&R inferior occipital, and L&R fusiform gyrus. 

The hippocampal regions included L&R hippocampus, L&R para hippocampus gyrus, L&R amygdala. Inter-regional 

connectivity was measured using Pearson’s correlation coefficient of the mean time series between pairs of regions.  

These pairwise connectivity values were used to form the entries in a symmetric matrix, called the functional network 

connectivity matrix. The difference of two FNC matrices, post-season minus pre-season, was computed. The upper 

triangular portion, Fig 3(right) is vectorized and used as the feature vector. In all three feature vectors were formed 

and were denoted ΔDMNFNC  for the DMN regions,  ΔDHFNC for the combined DMN and hippocampus regions, and, 

ΔVisualFNC for the visual medial regions. 

 

Figure 3: Representative examples of the two types features used as input to the machine learning algorithms. (left) 

ΔPSD, the changes in power/frequency and (right) Seasonal ΔFNC matrix (upper triangular portion).  

2.3 Classifier training, evaluation and model selection methodology 

Next, multiple classifiers were systematically trained to test their ability to distinguish between the high and light 

impact exposure groups using each feature type. The classifiers included Adaboost, Gradient boost, Support Vector, 

Random Forest and ERT(Extremely Randomized Trees) classifiers [8, 9]. Nested cross-validation was performed with 

stratified 3-fold cross-validation in the outer layer and 3-fold cross-validated grid search in the inner layer. Nested 

cross-validation holds out test data from training data and allows to compute an unbiased estimate of real world 

performance [10]. The mean of the means of training and cross validation (CV) score across the nested folds are shown 

in Table 1. The inner layer performed grid search for model (hyper parameter) selection within each classifier category 

(e.g. Adaboost, Gradboost, Support vector).  The F1 score was chosen as the performance metric because it provides 

an unbiased measure of performance when classes are unbalanced.  



 

 

3. RESULTS 

For each feature, several models performed much better than chance (F1-score=50%) as shown in Table 1. For 

example both the Gradboost (F1-score=75.0%) and the Support Vector (F1-score=72.2%) classifiers performed well 

for the feature ΔVMPSD.  Similarly, performing classifiers were found for each feature.  To assess the reliability of the 

learning models accuracy via the notion of statistical significance, the approach of [11] was used from which the top 

performing classifiers have p-values≈ 0.0001. 

Table 1: Nested Cross validation mean F1-scores (percentages) for Training, Cross Validation and Test data 

  Classifiers Train CV Test     Classifiers Train CV Test 

Δ
 V

M
 P

S
D
 

Adaboost 88.1 53.1± 16.8 64.6 ± 23.2    

Δ
 D

M
N

 F
N

C
 

Adaboost 88.5 66.6±11.0 72.0±9.0 

Gradboost 81.9 73.6 ± 2.9 75.0 ± 0.0   Gradboost 81.8 75.0 ± 1.6 70.5±7.8 

Support 

Vector 
82.2 70.9 ± 7.2 72.2 ± 4.8   

Support 

Vector 
92.4 73.7 ±4.0 73.2±4.2 

Random 

Forest 
90.4 70.7 ± 5.5 68.3 ± 5.1   

Random 

Forest 
90.3 64.7±6.5 77.5±2.5 

ERT 89.3 73.9 ± 3.6 70.6 ± 11.1   ERT 89.2 75.3±3.0 72.7±3.2 

Δ
 P

o
st

er
io

r 
D

M
N

 P
S

D
 Adaboost 83 54.2 ± 18.1 70.0 ± 5.3   

Δ
 D

H
 F

N
C
 

Adaboost 88.6 62.8±9.1 72.0±9.0 

Gradboost 81.6 71.2 ± 7.0 70.5 ± 7.8   Gradboost 82.2 75.3±1.3 72.2±4.8 

Support 

Vector 
81.1 75.0 ± 1.6 75.0 ± 0.0   

Support 

Vector 
93.5 72.0±6.6 70.2±4.3 

Random 

Forest 
88.8 69.4 ± 6.9 59.9 ± 19.4   

Random 

Forest 
90.5 63.7±5.4 72.1±13.2 

ERT 88.7 71.6 ± 3.8 62.6 ± 9.1   ERT 89.3 72.9±7.2 72.4±13.5 

Δ
 P

C
C

 P
S

D
 

Adaboost 86.6 52.5 ±13.5 58.8 ± 16.9   

Δ
 V

is
u

al
 F

N
C
 

Adaboost 87.1 62.8±11.9 67.2±11.0 

Gradboost 82 72.0 ± 4.5 75.0 ± 0.0   Gradboost 82.1 73.1±4.0 70.3±8.2 

Support 

Vector 
83.2 63.2 ± 17.1 73.8 ± 2.1   

Support 

Vector 
92.1 73.7±3.0 73.7±2.3 

Random 

Forest 
90.2 62.8 ± 8.9 62.7 ± 9.2   

Random 

Forest 
90.2 69.5±6.6 71.0±4.2 

ERT 90.1 67.5 ± 6.4 73.3 ± 3.8   ERT 89.1 70.8±2.6 75.8±1.4 

Δ
 F

ro
n

ta
l 

D
M

N
 P

S
D
  

Adaboost 83.2 58.1 ± 10.8 65.5 ± 10.3   

  

        

Gradboost 81.7 74.4 ± 1.9 75.0 ± 0.0           

Support 

Vector 
81.4 68.3 ± 6.8 73.0 ± 5.6           

Random 

Forest 
89.5 64.1 ± 9.8 58.1 ± 24.3           

ERT 89 69.4 ± 6.6 53.7 ± 36.9           

Table 2: Comparison of PSD in High Impact compared to Light Impact players 

ΔPSD Change P-Value 

Visual Medial Decrease 0.1 

Posterior DMN Increase 0.0201 

PCC Decrease 0.0263 

Frontal DMN Increase 0.0002 

 

3.1 Classification based on RSN power spectral density features  

For the features ΔVMPSD, ΔPCCPSD and ΔFrontal DMNPSD the Gradboost classifier was stable across the nested cross-

validation and generalized well to the held out test data, as shown in Table 1(left). For the feature, ΔPosterior DMNPSD, 

the support vector classifier was stable and generalized well to the test data with F1-score=75.0%.  Further, changes 

in power from pre to post changes in high impact players showed significant increase in posterior DMN, frontal DMN 



 

 

and significant decrease in PCC compared to light impact players as shown in Table 2. A decrease in Visual medial 

network power is also observed which trend towards significant with p-value 0.1 

3.2 Classification based on regional connectivity features 

For functional network connectivity features: ΔDMNFNC, ΔDHFNC and, ΔVisualFNC  the support vector, ERT, and 

Gradboost classifiers performed well in the nested cross validation, as shown in Table 1(right). These classifiers 

have similar F1-scores between 70.2 and 75.3% and overlapping distributions with generally small standard 

deviations.   Since these classifiers have similar discriminatory power when hyperparameters are properly tuned, 

their similar performance make sense. Discriminatory features to classify the head impact exposure of the players is 

identified for Gradboost classifier as it was stable across the nested cross-validation iterations. Connectivity changes 

of inferior parietal with superior frontal left and medial orbitofrontal left is identified as top two discriminatory 

features for ΔDMNFNC. Changes of connectivity between hippocampus right and inferior parietal right is identified 

as top discriminatory feature after adding hippocampus regions to DMN regions in ΔDHFNC followed by 

connectivity changes of inferior parietal with superior frontal left and medial orbitofrontal left. 
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Figure 4: Discriminatory features derived from Gradient Boosting algorithm 

4. DISCUSSION 

There are several important meta results from the current study. First, is that more than one machine learning 

algorithm performed well for each feature type. This bolsters our belief in the existence of a true association 

between functional connectivity and head impact exposure during a single season of play. If only one classifier 

performed well, it might be attributed to chance or bias in that model; however, when several perform well this is 

unlikely to be due to chance. Second, the use of nested cross validation computes an unbiased estimate of real world 

performance and the confidence in that estimate which facilitates model comparison. As expected, we observed the 

cross-validation F1-score is slightly inflated for nearly every model relative to the model’s test F1-score [10]. Thus, 

the additional outer layer in the nested cross validation appropriately corrected the inherent inflation of model 

selection in the inner layer. Lastly, we note that adding the hippocampal regions to DMN regions did not improve 

these results, suggesting that the hippocampus regions are correlated to the existing features.  

4.1 Classification based on RSN power spectral density features 

An increase in activity of frontal and posterior DMN subcomponents, and a decrease in PCC is observed in this study, 

which has also been reported in several other diseases such as in epilepsy, Alzheimer’s and mTBI [12]. Suggesting 

that frontoposterior DMN components are not only intrinsically independent but are also highly complementary in its 

function [3, 12, 13].  Increase in the DMN activity in players subjected to high head impact exposure, may attribute 

to compensatory mechanism of neuroplasticity in response to neuronal repair [12]. A decreased connectivity in the 

PCC is observed in this study and was also shown by Abbas et al [2] in high school football players, exposed to 

subconcussive head imapcts. The observed decrease in PCC activity may have subsequent effects in functional brain 



 

 

health as PCC serves to play a role in processing external/internal stimuli, emotional processing related to episodic 

memory and frontal regions that has been associated with social cognition [14].  

4.2 Classification based on regional connectivity features  

Our results supports our hypothesis that head impact exposure effects functional connectivity that is manifest in 

important resting state fMRI networks and the hippocampal regions. Discriminatory features derived from ΔFNC 

analysis of DMN and hippocampus regions show connectivity changes from the inferior parietal region to the  superior 

frontal,medial orbital frontal left and the connectivity with the hippocampus left was the top discriminatory feature 

for identifying the head impact exposure (Fig.4). Our results corroborates previous findings that head injury often 

affects memory with changes in hippocampal and frontal regions [14]. For the ΔVM FNC feature, the inferior occipital 

gyrus left’s connectivity between medial and superior occipital gyrus right was identified as a discriminatory feature. 

In the future, we aim to further study the interactions between the regions, and add subjects and features to enrich the 

analyses. 

 5. CONCLUSION 

In this study, we examined whether single season changes in resting state fMRI features, including the power spectral 

density of resting state networks and the functional connectivity between gray matter regions, can discriminate the 

football players with different levels of sub concussive head impact exposure. We employed a robust model evaluation 

methodology to compare suitable classifiers, which gives unbiased estimates of real world performance. Our results 

supports the notion of compensatory role of DMN in response to injury. The consistent results that were found 

demonstrate the utility of using such a machine learning approach to study connectivity changes in youth and high 

school football players and provides strong support to the growing body of evidence that there are detectable changes 

in brain health from playing a single season of football.  

Note: This work has not been submitted for publication or presentation elsewhere. 
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