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ABSTRACT 
 
While cardiovascular disease is the leading cause of death in most developed countries, SPAMM-MRI can reduce 
morbidity by facilitating patient diagnosis. An image analysis method with a high degree of automation is essential for 
clinical adoption of SPAMM-MRI. The degree of this automation is dependent on the amount of thermal noise and 
surface coil-induced intensity inhomogeneity that can be removed from the images. 

An ideal noise suppression algorithm removes thermal noise yet retains or enhances the strength of the edges of 
salient structures. In this paper, we quantitatively compare and rank several noise suppression algorithms in images from 
both normal and diseased subjects using measures of the residual noise and edge strength and the statistical significance 
levels and confidence intervals of these measures.  

We also investigate the interrelationship between inhomogeneity correction and noise suppression algorithms 
and compare the effect of the ordering of these algorithms. The variance of thermal noise does not tend to change with 
position; however, inhomogeneity correction increases noise variance in deep thoracic regions. We quantify the degree 
to which an inhomogeneity estimate can improve noise suppression and whether noise suppression can facilitate the 
identification of homogeneous tissue regions, and thereby, assist in inhomogeneity correction. 
 
Keywords: MRI, thermal noise suppression, surface coil, inhomogeneity correction, SPAMM 
 

1. INTRODUCTION 
Cardiovascular disease is the leading cause of death for both men and women in most developed countries. Well over 
2,500 Americans die of the disease every day: more than the next seven causes of death combined [7]. However, 
SPAMM-MRI can provide data that can reduce morbidity by improving patient diagnosis, treatment and intervention 
assessment. Manual extraction of heart motion from the SPAMM-MRI is the bottleneck of this methodology, requiring 
roughly 5 hours per subject. A myocardial deformation analysis method with a higher degree of automation is essential 
for clinical adoption of SPAMM-MRI [8]. The degree of this automation is dependent on the amount of thermal noise 
and surface coil-induced intensity inhomogeneity that can be removed from the images.  

MRI is typically corrupted by thermal noise from the sample and receiver coils. SPAMM MRI is acquired with 
surface coils which can cause the same tissue to have different intensities depending on location. Previous research has 
focused on either the extraction of field inhomogeneity [1,6,9,10] or thermal noise [2,5] in isolation. The purpose of this 
paper is to determine optimal techniques for the removal of both surface coil intensity inhomogeneity and thermal noise 
in 4D cardiac MRI and to evaluate the nature of the interaction between these two techniques. This research is similar in 
spirit to that of Madabhushi [11] who has studied a different relationship, namely, the interaction between field 
inhomogeneity correction and MR intensity standardization. 

  
2. METHODOLOGY 

We denote an acquired MR volume image by a pair V= ( ),g�  where �  is a finite rectangular array of voxels and g  is 

a function that assigns to every voxel c  in �  an intensity value ( )cg  from a set of integers. We model the combined 

effect of the surface coil and thermal resistance as ( , , ) ( , , ) ( , , ) ( , , )thermx y z x y z x y z x y zβ= +g f n  where g  is the 
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observed image, f is the true image, and β  is the multiplicative gain factor from the surface coil. We model the thermal 

noise, thermn , as an additive, signal independent, white, zero-mean bi-variate stationary Gaussian random field 

( 2~ (0, )therm nN σn ) which is uncorrelated from point to point. In order to reconstruct f  from g , it is necessary to develop 

an estimate of the surface coil inhomogeneity β̂ , and the thermal noise ˆ thermn . If this could be done perfectly then one 

could “subtract” ˆ thermn and then divide the result by β̂  to reconstruct f . The estimation of these terms is an ill-posed 

problem, and so a perfect solution is infeasible.  

 We have shown previously [12] that the scale-based method [1] can be used to derive β̂  from g  and correct 

for much of the intensity inhomogeneity in SPAMM-MRI. This method estimates f  by dividing g  

by β̂ : ˆ ˆˆ( , , ) ( , , ) ( , , ) / ( , , ) ( , , ) / ( , , )thermx y z x y z x y z x y z x y z x y zβ β β= +f f n . While this corrects much of the intensity 

inhomogeneity, it complicates the noise suppression task by making the second term non-stationary.  In our previous 
work [12], we have shown that the adaptive wiener filter [3] can be used to remove some of the thermal noise. In this 
paper we employ systematic experimentation to determine how to best suppress both thermal noise and background 
intensity variation. We conduct three experiments. In the first experiment, we compare several more recently developed 
noise suppression methods by measuring how well each method reduces noise while retaining the strength of the edges 
of interest. In addition, we combine these with the wiener filter method to explore the effects of their integration. In the 

second experiment, we investigate whether performing noise suppression first can enable an improved estimate of β̂ . 

The hypothesis is that noise suppression can facilitate the identification of homogeneous tissue regions and thereby assist 
in inhomogeneity correction, and the goal of this experiment is to determine whether this is true. In our third experiment,  
we perform inhomogeneity correction first and then suppress noise. We investigate whether the noise suppression results 

are improved by using β̂  to scale the estimated variance of the noise 2 ( , , )n x y zσ  over the image.  

 
2.1 First experiment: comparison of nonlinear noise suppression methods 
For the first experiment, we compare the following five noise suppression algorithms:  

(1) Scale-based anisotropic diffusion [5], hereafter denoted SBD filter. 
(2) Anisotropic diffusion using Tukey’s biweight influence function [4], hereafter denoted TAD filter. 
(3) Adaptive Wiener filtration [3], hereafter denoted AW filter. 
(4) AW filter followed by TAD. 
(5) TAD followed by AW filter.  

We denote the set of all MRI protocols by P and the set of all body regions by B. We let VPB be the set of all images that 
can be generated from body region B using protocols P.  
 Let S` denote a given set of volume images. In our case, this consists of 10 images from both normal and 
diseased subjects. Before applying a noise suppression method to a given input image in S`, we apply a sequence of 
operations to prepare the volume. First we apply intensity correction, to suppress most of the background intensity 
variation. Next we apply a method [13] called intensity standardization to reduce the intersubject variation in tissue 
intensities. For the SPAMM images in this paper, we fill the tag lines introduced in SPAMM with a grayscale 
morphological closing operation with a linear structuring element. Let the resulting set of volume images be denoted by 
S1. To each image in S1 we apply each noise suppression algorithm.  
 Each noise suppression algorithm has its own set of parameters. To initialize them we have, wherever possible,  
used the recommended settings from the authors of each noise suppression method. For a parameter with a range of 
recommended values, we have selected the parameter that makes the filter results have the same residual noise. We 
begin by parameterizing the AW filter. The window size is set to the size which yielded the best results in our previous 
experiments [12] for the task of segmentation. Next we parameterize the TAD filter. As described in [4], for a given 

volume, I,  the parameter σ  is set according to ( )( )5 1.4826 I Imedian I median Iσ  = ∇ − ∇  . The number of 

iterations is set to 100 to achieve the same approximate level of smoothing as the AW filter. Next we parameterize the 
SBD filter. As described in [5], for a given volume, I, we compute I∇  and find the mean, µ , and standard deviation, 

σ , of the lower 95% of the values in the gradient image. Then we set the SBD filter’s homogeneity parameter to 
3µ σ+  as recommended in [5]. The number of iterations is set to 100 to achieve the same residual noise as the AW 

filter and TAD filters. For the combination filters, we let the window size be 5x5 to achieve slightly less than half the 
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noise suppression compared to the AW filter used in isolation and follow a similar process to initialize the remaining 
parameters shown in Figure 1.  
 

SBD filter TAD filter AW then TAD filter TAD then AW filter AW filter 
homogeneity 

see text 
σ  

see text 
σ  

see text 
σ  

see text 
window size 

8x8 
number of iterations 

100 
number of iterations 

100 
number of iterations 

50 
number of iterations 

50 
 

  window size 
5x5 

window size 
5x5 

 

Figure 1: Noise suppression parameters 
 
           We characterize the performance of the noise suppression algorithms using two measurements. For each 
volume, Vj, an expert anatomist has delineated the myocardium (Figure 2, solid line). We compute the normalized 
standard deviation (NSD) of the myocardium region just inside the expert’s boundary (dashed line). To measure the 
residual edge strength after noise suppression, we compute the magnitude of intensity gradient perpendicular to the 
expert drawn contour at evenly spaced intervals along the expert’s contour as shown in the figure. We search along the 
perpendicular direction to the contour along line segments roughly 4 pixels on either side of the experts contour and 
compute the maximum of the magnitude of the intensity gradient along these line segments.  Finally we record the edge 
strength for this image as the trimmed mean of these maxima (excluding the highest 5% and lowest 5 % ) on the line 
segments for a given contour. We compute these measures for all 5 filters for the image data in the set S1. 
 

    
(a)                                                              (b) 

Figure 2: (a) expert’s myocardium boundary (b) edge strength is measured along perpendicular profiles to expert’s boundary 
 
2.2 Second experiment: the effect of the order of noise suppression and inhomogeneity correction  
 
2.2.1 Real noise and field inhomogeneity 
In this experiment, we investigate the effect that the ordering of noise suppression and inhomogeneity correction 
operations has on the resulting residual intensity inhomogeneity, residual noise and edge strength. Before applying the 
two sequences of operations to each input image in S‘, we fill the tag lines as described earlier, and we denote the 
resulting set by S2. To this set we apply each operation sequence. The first sequence is noise suppression followed by 
inhomogeneity correction, resulting in the set of images S2fc. In the second sequence, we reverse the ordering yielding 
the set of image S2cf. 
 
2.2.2 Synthetic noise and field inhomogeneity 
In this experiment, we investigate whether the same results found using real noise and inhomogeneity apply when we 
vary both the power of the noise and the strength of the field inhomogeneity. Before adding controlled amounts of 
synthetic noise and inhomogeneity, we apply a sequence of operations to prepare the images. We apply inhomogeneity 
correction, standardization and fill the tags with a closing and then smooth the images with a TAD filter. We denote the 
resulting set images by S3. Next we modify these volumes by applying low, medium, and high strength inhomogeneity. 
Then we apply low, medium, and high noise power. In all we apply 9 different combinations of field strength and 
synthetic noise. We denote the resulting images by S3xy where x denotes the strength of the applied inhomogeneity and y 
denotes the power of the uniform noise added. Having prepared the volumes, we then apply the above two sequences to 
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each image in S3xy and compare the myocardium NSD and epicardium edge strength for the two resulting sets S3xyfc and 
S3xycf. 
 To simulate field inhomogeneity, we use the Biot-Savart law which expresses mathematically the relation 

between the current, I ,  flowing in the direction of the infinitesimal wire elements, dL
�

, to the magnetic field they 

generate. The current flowing in the wire along direction L̂  over the distance dL
�

 creates a magnetic vector field, which 

at the point p, that is distance r away from dL along vector r̂  is given 

by: 0 0
2 2

ˆsin( )ˆ
( )

4 4z wire z wire

dL nI IdL
B r dz dz

r r

θµ µ
π π∈ ∈

×= =∫ ∫
r

��

� � ,  where r̂  is the unit vector in the radial direction from the point 

p in space to the wire element dL
�

. We construct two ellipses representing two surface coils and position them in the 
coordinate system of each input volume image, V, and solve the Biot-Savart equation to compute the magnetic field at 
each voxel (x,y,z) from every segment of the two tessellated ellipses. We retain the magnitude of the component of 

( , , )B x y z  perpendicular to the main magnetic field 0B  (which we assume to be in the volume’s z direction) and denote 

this component ( , , )coilsB x y z . Through the reciprocity theorem, the sensitivity of the coil to a magnetic field at a point 

( , , )x y z  is proportional to ( , , )coilsB x y z . We then inject this field inhomogeneity onto the volume by element wise 

multiplication: For an image V3= ( ),g�  in S3, the resulting image V3x= ( )3, xg�  is given by, for any ( , , )x y z ∈� , 

( )3 3, , ( , , ) ( , , )x coilsg x y z g x y z B x y zγ= , where γ  is the scalar field strength gain. To compute low, medium and high 

gains, we use 0.75, 1.00, 1.25 times a nominal gain *γ  that reconstructs the original inhomogeneity found in the 

uncorrected volumes. Figure 3 (left) shows the field generated for an 11 slice volume (images from left to right, top to 
bottom correspond to the generated field for the slices from base to apex. The application of this field for one slice is 
shown on the right.  The set resulting from this operation on S3 is denoted S3x. 
 

 
                                                                             (a)                                                     (b) 
Figure 3: (a) The simulated synthetic field inhomogeneity showing all slices. (b) the effect of removing the inhomogeneity from the 
scanned images and adding a large strength simulated field. 
 
To simulate noise, we compute the mean µ  and standard deviation σ of the NSD in the myocardium in an image  

V3x�S3x. We let the low, medium and high noise powers be nσ µ ασ= + , where { }1,0,1α ∈ −  for the different noise 

levels. We construct a signal independent, white, zero-mean, stationary Gaussian random field, ( )2~ 0,therm nN σn and 

add it to each V3x yielding the set S3xy where y is the low, medium or high noise power used. 
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2.3 Third experiment: Evaluating the effect of using a field inhomogeneity estimate to regulate noise suppression 
In this experiment, we investigate whether a field inhomogeneity estimate from the correction algorithm can be used to 
provide noise suppression with a more useful, spatially varying estimate of noise power. We prepare the images by 
filling the tag lines and then perform inhomogeneity correction on the images in S‘, yielding the input image set denoted 

S4. Next we apply noise suppression methods which do and do not use the inhomogeneity estimate β̂  which is saved 

during inhomogeneity correction. We have selected the TAD filter and the AW filters for testing. We denote the noise 
suppressed image sets as S4TADi and S4AWi when these noise suppression filters use the inhomogeneity estimate, and use 
the notation S4TAD and S4AW when we use the filters which do not use the inhomogeneity estimate. We then compute the 
myocardium residual noise and epicardium edge strength for 10 subjects in these volume sets.  

To inject spatially changing noise variance into the TAD filter, we begin with the robust statistical formulation 
of anisotropic diffusion described by Black, et al in [4]. An estimate of the robust scale of the image, eσ , is computed to 

determine how large the magnitude of the image gradient can be before it is considered an outlier, hence not part of 
noise, and a place where the diffusion should decrease or stop. In their formulation, the influence of outliers in the 
magnitude of the intensity gradient is captured by an influence function, ( , )dψ σ and the anisotropic diffusion is 

expressed as  ( )( , , , )
( , , ),

I x y z t I
div d x y z

t I
ψ σ
 ∂ ∇=  ∂ ∇ 

, where I  denotes a given image. The point where the influence 

of outliers in the image gradient first begins to decrease occurs when the derivative of the influence function is zero. For 
the Tukey’s biweight influence function   

22

1
( , )

0

d
d d

d

otherwise

σψ σ σ

    − ≤  =     


    , 

this occurs when 5 eσ σ= , where eσ  is the estimate of the scale in the image. Black et al, proposed a single scalar 

estimate of the scale of the image: ( )1.4826e I Imedian I median Iσ  = ∇ − ∇  ,  where the constant in this equation is 

derived from the median absolute deviation of a zero-mean normal distribution with unit variance which is 1/1.4826.  
We inject knowledge of spatially variant noise power into the estimate of eσ . During correction, we have divided the 

image by ( , , )x y zβ . This affects both the noise and signal alike. In particular, 
2

2
_ 2

( , , )
( , , )

( , , )
n

n new

x y z
x y z

x y z

σσ
β

= , thus where 

( , , ) 1x y zβ >  the noise power is decreased, while where ( , , ) 1x y zβ <  the noise power is increased. Since eσ  roughly 

approximates the square root of the noise power in the image, nσ , our new spatially variant estimate for eσ  is: 

_ ( , , )
( , , )

e
e new x y z

x y z

σσ
β

= Hence the original Tukey’s biweight influence function becomes: 

22
( , , )

( , , ) 1 ( , , ) ( , , )
( ( , , ), ) ( , , )

0

new
new new

d x y z
d x y z d x y z x y z

d x y z x y z

otherwise

σψ σ σ

     −  ≤  =     


   , 

where _( , , ) 5 ( , , ) 5
( , , )

e
new e newx y z x y z

x y z

σσ σ
β

= = . The robust statistical formulation of anisotropic diffusion 

equation becomes: 

( )( , , , )
( , , ), ( , , )new

I x y z t I
div d x y z x y z

t I
ψ σ
 ∂ ∇=  ∂ ∇ 

. 

To inject spatially changing noise variance into the AW filter, we begin with the original formulation which 

uses spatially invariant noise power:  ( )
2 2

2
( , , ) ( , , )g x y z I x y z

σ νµ µ
σ
−= + − , where µ  and 2σ  are the local mean and 
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variance around each pixel:  
, ,

1
( , , ) ( , , )

i j k R

x y z I i j k
MNP

µ
∈

= ∑    and  2 2 2

, ,

1
( , , ) ( , , )

i j k R

x y z I i j k
MNP

σ µ
∈

 
= − 
 

∑ , and where 

R is the local M by N by P neighborhood around each pixel.  The noise power, when spatially invariant, is estimated by 

the mean of the local estimated variances:  2 2

, ,

1
( , , )

imgx y z R

x y z
RST

ν σ
∈

= ∑ , where Rimg is the set of x,y,z coordinates of the 

R by S by T image, I.   The fraction of the local variance in the image which is not explained by the local noise is 
considered to be the fraction of the local deviation from the local mean intensity which can be trusted. It is this fraction, 

2 2

2

σ ν
σ
−

, which is added back to the average signal, µ .  The noise power is made spatially variant by using the 

estimated field inhomogeneity:  
2

2
2

( , , )
( , , )new x y z g
x y z

νν
β

= , where g is an overall gain constant which can be used to 

scale the influence of the field inhomogeneity estimate. 
 

3. RESULTS  
3.1 Comparison of nonlinear noise suppression methods 
 
3.1.1 Qualitative results:   
We find that all noise suppression methods can be parameterized to yield low amounts of residual noise.  In Figure 4 (a), 
we can see that the blotchiness in the filter input image is largely suppressed in all of the filtered images.  This result is 
not surprising since we have parameterized the filters to yield about the same residual noise as the AW filter. However, 
we can see that the edge strength varies significantly depending on the filter used, particularly along the boundaries of 
the myocardium. The SBD filter appears to be preserving edges the best, followed by TAD. In (a), the SBD filter 
appears to provide better preservation of small structures, such as the trabeculae.  
 

 
                                                                     (a)                                                                                                         (b) 
Figure 4: (a) Filter results for slice near end systole and midway between base and apex of heart.  (b) Additional filter results with the 
same layout as in (a).  
 
All of the noise suppression methods, except the AW filter, occasionally allow some structure from the morphological 
closing operation to show through as white spots (Figure 4 (b,top)). In Figure 4 (b,bottom)  we can see that the 
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moderator band, a strip of muscle dividing the right ventricle near the apex is not well preserved by any of these methods 
(See the results of experiment 3 for an improvement).  
 
3.1.2 Quantitative results: 
When we compare the myocardium NSD that results from these filters we find that we have parameterized them well so 
as to achieve about the same residual noise. In the first row in the table in Figure 5, the mean myocardium NSD is the 
first entry and the standard deviation in the NSD is the second entry. The second row shows the mean reduction in the 
myocardium NSD as a percentage of the original input myocardium NSD. The reduction of the myocardium NSD varies 
by only a few percentage points depending on the method. The second entry in the second row shows the 95% 
confidence interval for the reduction in NSD. The third row shows the mean (first entry) and standard deviation (second 
entry) of difference in the NSD: input NSD minus filtered NSD.  
 

 Input SBD TAD AW then TAD TAD then AW AW 

residual noise 0.258 
0.076 

0.204 
0.072 

0.210 
0.074 

0.205 
0.073 

0.213 
0.074 

0.196 
0.070 

% reduction in 
residual noise 

NA 20.9% 
20.2%-21.5% 

18.7% 
18.3%-19.1% 

20.8% 
20.4%-21.2% 

17.5% 
17.2%-17.8% 

24.3% 
23.8%-24.8% 

difference from 
input 

NA 0.054 
0.031 

0.048 
0.020 

0.054 
0.019 

0.045 
0.015 

0.063 
0.022 

Figure 5: Residual noise results for each noise suppression method. 
 
In the graph in Figure 6 (left plot), each data point plotted represents the difference in the NSD in the noise suppression 
output for one image compared to the same image without noise suppression. That is for the xth image, the value of the 
following expression is computed:   
   y(x)= (myocardium NSD from the same unfiltered xth image   -   myocardium NSD in the xth image after filter j )   
where j = filter type.  The plot indicates that the methods are reducing the myocardium NSD by about the same amount, 
since the data points for all methods overlap at around y=0.05. 
 

        
Figure 6: Left plot: The similarity in the reduction in myocardium NSD by the noise suppression methods extends across subjects, 
time and throughout the volume, as shown by the overlap of the data points.  This plot is a subsampling of every 10th data point (for 
readability) from over 1300 images taken from 10 subjects recorded throughout systole. Right plot: The stratification in the 
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increase/preservation of myocardium edge strength by the noise suppression methods extends across subjects, time and throughout the 
volume, yielding the appearance of a distinct band for each method. This plot is also a subsampling of every 10th data point.  
 
At the same level of noise reduction there are significant differences in the strength of the epicardium edge. The table in 
Figure 7 shows, in the first row, the mean edge strength (first entry) and edge strength standard deviation (second entry) 
for the input images and the filtered images. There are statistically significant differences between all pairs of methods 
for the mean edge strength (p<0.0001) using pair wise t-tests. The second row shows the mean increase in the edge 
strength as a percentage of the original input edge strength and the second entry in the row shows the 95% confidence 
interval. The third row shows the mean and standard deviation (second entry) of difference in the edge strength: input 
edge strength minus filtered edge strength.  
 

 Input   Output   
  SBD TAD AW then TAD TAD then AW AW 

edge strength 610 
148 

553 
199 

523 
180 

453 
151 

435 
146 

358 
134 

% increase in edge 
strength 

NA -9.4%  
-10.1% - -8.6% 

-14.4%  
-15.1% - -13.6% 

-25.7%  
-26.2% - -25.3% 

-28.6%  
-28.9% - -28.2% 

-41.1%  
-41.6% - -40.7% 

difference from 
input 

NA -57 
82 

-87 
84 

-157 
48 

-175 
40 

-252 
52 

Figure 7: Edge strength results for each noise suppression method.  
 
The methods are not equivalent in their ability to preserve the edges of interest. In the graph in Figure 6, (right plot) each 
data point plotted represents the difference in the edge strength in the noise suppression for one image compared to the 
same image without noise suppression. That is for the xth image, the value of the following expression is computed:   
   y(x)= (Edge strength in the xth image after filter j     –   edge strength from the same unfiltered xth image )   
where j = filter type.  This plot corroborates the ranking borne out in the table of mean edge strengths in Figure 7.  In the 
plot, the data points from the methods form bands. From top to bottom (greatest increase/preservation in edge strength to 
least) we find the SBD filter, TAD filter, AW then TAD, TAD then AW and at the bottom, the AW filter which 
preserves edge strength the least.   

We have compared each pair of filters. When comparing the edge strength from the SBD filter to that from 
TAD filter, we find that the mean SBD filter edge strength is 30 gray levels stronger than TAD in a 12bit image. The 
standard deviation is 66.0. Using a paired t-test we find that the difference between the means is statistically significant: 
p<0.001 when we analyze >1300 images from 10 subjects. On the average, SBD filtering yields 5.0% stronger edges 
than TAD with a 95% confidence interval of (4.4%-5.6%). 
 
3.2 Evaluating the effect of the ordering of operations 
 
3.2.1 Real noise and field inhomogeneity 
On images with real noise and field inhomogeneity from the MR scanner, we find significantly better correction is 
visible in the images when correction precedes noise suppression. In Figure 8 (a) is an image from the set S2 before 
correction and noise suppression. In (b) we have applied TAD filtering followed by inhomogeneity correction yielding 
image from the set S2fc. In (c) we have reversed the order of the last two operations yielding an image from the set S2cf. 
There are two noticeable differences: 1) there is much greater inhomogeneity correction in (c) and 2) there is better edge 
strength preservation in the deep thoracic region in (c). Correction boosts the contrast between the weak edges in this 
region. These higher contrast edges are smoothed less upon application of the TAD filter. When noise suppression is 
applied first, the weak edges are smoothed and are not recovered by inhomogeneity correction.  
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(a)                                  (b)                                  (c) 

Figure 8: (a) Input image with background intensity variation. (b) Image when noise suppression precedes correction. (c)Image when 
correction precedes noise suppression.  
 
3.2.2 Synthetic noise and field inhomogeneity 
In order to determine whether noise suppression can be made to improve correction, we selected  2 subjects, one normal 
and one diseased and 1 volume from each subject from at early systole, mid systole, and at end systole. We then added 9 
different combinations of synthetic field strengths (x) and noise power (y) to the prepared volumes yielding input 
volume set S3xy. We then began comparing the performance of the two sequences of operations – inhomogeneity 
correction followed by noise filtering and vice versa – yielding sets S3xycf and S3xyfc. 
 
It became immediately apparent that S3xycf yields much better inhomogeneity correction than S3xyfc. To understand this 
effect, we investigated the inhomogeneity correction process.  The first row in Figure 9 illustrates the salient steps in the 
correction process. To correct the input image (first column), the scale in the image is computed where the scale at a 
voxel is the radius of the largest sphere centered at the voxel for which the intensities of the voxels in the sphere satisfy 
an intensity homogeneity constraint. The voxels having the largest scale are extracted and from these and the largest 
connected object is selected (third column). Next, the mean µ and standard deviation σ  of the intensities of these 

voxels are computed. All voxels in the input image whose intensities fall into the range [ ,µ νσ µ ωσ− + ] are used as 

points (fourth column) at which the field inhomogeneity is sampled and a 2nd degree polynomial is fit (fifth column) to 
the intensities at these points. The performance of the algorithm on a given input image is determined by the scale image 
that is computed. The scale image is determined by the homogeneity criteria used by the correction algorithm and the 
amount of noise in the image. The homogeneity criteria is largely dependent on the homogeneity value h  (see below), 
which describes the expected standard deviation intensities in the same tissue.  

 
Figure 9: Intermediate results from the correction algorithm for three tests. First row: an image from S3xycf with homogeneity 
estimated from the image in S3xy. Second row: an image from S3xyfc with homogeneity estimated from the image in S3xyf. Third row: 
an image from S3xyfc with homogeneity estimated from the image in S3xy. 
 
To compute the homogeneity value, the algorithm assumes that 15% of the voxels in the volume are occupied by true 
tissue edges. Homogeneity is computed as 3l lh µ σ= +  where lµ and lσ  are the mean and standard deviation of the 

lower 85% of the histogram of the intensity gradient image. In Figure 9 (first row), the sequence correction followed by 
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filtering is applied and the correction algorithm calculates the tissue homogeneity measure from the image in S3xy. In the 
second row, the reverse sequence is applied and correction algorithm calculates tissue homogeneity from the image in 
S3xyf. A much higher homogeneity is computed for the first sequence ( h =1274 vs h =145) because the thermal noise has 
not been suppressed. Consequently the object with maximum scale (max scale is 12 in both sequences) is much smaller 
when the more stringent homogeneity ( h =145) is used as shown in the third column first and second rows. As a result, 
the standard deviation of the intensities of the pixels with max scale is much smaller (e.g., 56 vs 494 gray levels) while 
the mean remains roughly the same (e.g., 2051 vs 1993).  Since the standard deviation is much smaller in the second 
sequence, a much smaller set of pixels in the image falls into the range [ ,µ νσ µ ωσ− + ], and thus, a much smaller set of 

inhomogeneity sampling points is used. In the intensity correction of cardiac MR, there is not one tissue which 
adequately samples the field inhomogeneity. To adequately sample the background intensity variation, the intensities of 
several tissues and structures are typically needed including: the blood in the ventricular cavities, the myocardium, the 
fat between the myocardium and chest wall and the chest wall. As seen in the fourth column, second row, the field 
sampling points do not contain much of the chest wall, and particularly those areas of the image which are brightest due 
to the surface coils, despite the fact that 5ω =  in the sampling range. The sampling points used in the first sequence 
cover a greater extent of these structures and yields better correction. In SPAMM-MRI, the dominant slowly varying 
component of the intensities throughout the image is the field induced inhomogeneity and not the contrast between 
tissues. As a result, the correction based on a field estimated by sampling from multiple structures tends to be a more 
accurate estimate than that achieved from estimation from any one structure.  

In order to investigate whether the second sequence would benefit from using the same homogeneity as the first 
sequence, we created a modified correction algorithm for the second sequence that uses the same homogeneity value 
created in the first sequence. As shown in the third row of the figure, the homogeneity is computed from images in S3xy 
for filtering followed by correction and the object with maximum scale covers a much larger portion of the salient 
structures. Consequently, a much larger portion of the image is used to sample the inhomogeneity. This yields correction 
which is as good as correction followed by filtering.  To explore the merits of this modified correction approach, we 
have measured the residual inhomogeneity in the myocardium (using the myocardium NSD) and the epicardium edge 
strength after applying the two sequences to the 54 input volumes in S3xy while using the same (volume dependent) 
homogeneity for both sequences. In Figure 10, the first entry in each row is for inhomogeneity correction followed by 
filtering and the second entry is for the reverse sequence. For the myocardium, the differences in NSD are not 
statistically significant for any tested combination of noise and field: p>0.30 for all cases. On the other hand, the first 
sequence yields much stronger edges: the differences in the edge strength between the two orderings are statistically 
significant p<0.01 for all cases except 2 as noted by the p values. 
 
Residual inhomogeneity Low noise power Medium noise power High noise power 

Low strength field inhomogeneity  0.171  (0.048) 
0.172  (0.047) 

0.171 (0.047) 
0.170  (0.046) 

0.170  (0.046) 
0.169  (0.045) 

Medium strength field inhomogeneity 0.173 (0.049) 
0.173  (0.048) 

0.172  (0.049) 
0.172  (0.047) 

0.172  (0.048) 
0.171 (0.046) 

High strength field inhomogeneity 0.174  (0.051) 
0.174  (0.048) 

0.173 (0.050) 
0.173 (0.047) 

0.171 (0.049) 
0.172 (0.047) 

Edge strength    
Low strength field inhomogeneity 113.3    (38.47) 

106.7    (39.58) 
p<0.0001 

108.3  (34.26) 
102.2  (33.09) 

p<0.0001 

105.5   (32.96) 
100.4  (30.89) 

p<0.0001 
Medium strength field inhomogeneity 137.7 (55.64) 

133.3      (66.13) 
p=0.20 

129.8  (46.00) 
123.0  (50.03) 

p=0.002 

125.0 (42.22) 
117.9 (42.0) 

p<0.0001 
High strength field inhomogeneity 189.3 (118.0) 

161.7 (91.80) 
p<0.0001 

156.5 (67.28) 
152.13 (79.31) 

p=0.27 

147.6 (56.20) 
142.47 (62.20) 

p=0.012 
Figure 10: Residual homogeneity and edge strength comparison between inhomogeneity correction followed by filtering (first entry) 
and the reverse sequence (second entry) 
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3.3 Evaluating the effect of using a field inhomogeneity estimate to regulate noise suppression 
We formed volume sets S4TADi and S4AWi by injecting the inhomogeneity estimate into the TAD filter and the AW filter, 
respectively, to spatially regulate the noise suppression. We then compared these volumes to those generated using the 
same filters that do not utilize the inhomogeneity estimate: S4TAD and S4AW. Qualitatively, the filters that use the estimate 
yield images that appear to be significantly sharper and more detailed. While the noise which had been amplified by 
inhomogeneity correction is clearly reduced in the appropriate places, much more of the true structure in the images is 
preserved in the regions closer to the surface coil where the SNR is higher. In Figure 11(a), the second and third images 
in the second row illustrate the distinct advantage of employing the estimate of the field inhomogeneity to regulate noise 
suppression. Fine structures, such the papillary muscles, are much better preserved when the estimate is used. Two other 
examples are also shown. In the first row of (b), the papillary muscles of this diseased subject with right ventricular 
hypertrophy are more readily visible. In the second row, the moderator band is much better preserved (compare with the 
result in Figure 4 (b,bottom)).  
 

   
                                                         (a)                                                                                                    (b) 
Figure 11: (a)First row: a field inhomogeneity estimate is used to correct the image. Second row: The field inhomogeneity estimate is 
also used to regulate noise suppression in the third image. (b)Other examples of the effect of using a field inhomogeneity estimate to 
regulate noise suppression.  
 
We computed the myocardium NSD and epicardium edge strength for 10 subjects including normal and diseased. In 
Figure 12, we can see that there is slightly more residual noise in the myocardium when using the inhomogeneity estimate 
during noise suppression. On the other hand there is significantly stronger epicardium edge strength when the 
inhomogeneity estimate is used during noise suppression. 
 

 TAD TAD using inhomogeneity 
estimate 

AW filter AW filter using 
inhomogeneity estimate 

Residual 
noise 

0.178 
0.058 

0.209 
0.059 

0.172 
0.057 

0.191 
0.060 

edge strength 178.5 
81.84 

233.9 
68.05 

128.0 
56.94 

178.14 
60.74 

Figure 12: Comparison of the residual noise and edge strength (first entry: mean, second entry: standard deviation) .  
 

4. CONCLUSIONS 
In conclusion all the methods can be parameterized to yield the same residual noise. However using these parameter 
settings, they yield significantly different edge strengths. In particular, the SBD filter yields the strongest edges, 
followed by TAD and then the remaining combination filters with the weakest edges from the AW filter. The mean 
differences in edge strengths are statistically significant, p<0.001, and sizable enough to be meaningful for many 
segmentation and analysis tasks. For the greatest reduction in background intensity variation, inhomogeneity correction 
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should precede noise suppression. For the best noise suppression, the inhomogeneity estimate from the correction 
method should be used to spatially regulate noise suppression.  In future research, we plan to combine scale-based 
filtering with the inhomogeneity estimate for further improvements to noise suppression in MRI. 
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