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Aims: We propose a sparse extension of the extremely randomized forest (ERF) [2] nonlinear regressor by embed-
ding it in a model reduction framework providing it with sparsity to reduce model complexity and reduced variance.
The method enjoys few tunable parameters and is readily scalable to large data through parallelization. We demon-
strate the utility of the method on two cases entailing joint modeling of genetic and image features with cognitive
scores in Alzheimer’s disease. In the first case (∼ 103) genetic SNP features are combined with the trimmed mean
summary statistic of voxel shrinkage in 38 cortical and subcortical structures upon nonlinear registration to a refer-
ence brain. In the second case the SNP features are combined with quartile summary statistics of the shrinkage in
a subset of 17 structures. In both the method identifies clinically relevant features by assigning feature importance
scores and the final model using only relevant features achieves high prediction accuracy.

Method: We construct a model reduction framework consisting of a hierarchical cross-validation in which each fold
of an outer k-fold cross-validation contains a complete q-fold inner cross-validation. The outer divides the data into
train and test sets allowing for model evaluation, while the inner divides each outer train set into new q-fold train and
validation sets. Similar to recursive feature elimination [3], only features whose importance is greater than the mean
importance is retained for the next iteration until the validation error no longer diminishes. However for the ERF,
OOB predictions [1] are unavailable therefore we use mean decrease in node impurity to compute features importance.
Additionally, each run of the inner and outer cross-validation folds are repeated n=10 and m=4 times respectively
with random training data shuffling to reduce variance. In the inner cross-validation feature importances are averaged
across repetitions, while the outer computes optimal feature set size from votes cast by the inner cross-validation.

Results and Conclusions: We applied the proposed approach to a subset of the ADNI [5] imaging genetics data
containing 30 normal and 18 AD subjects. For genomic features we normalized the < R, θ > tuples from 427 SNPs
associated with AD (i.e. whose p-value ≤ 10−3) [4] that are contained in the ADNI2 GWAS panel and have resolved
R and θ values. To form image features we computed the log Jacobian of the mapping between the subject’s T1 MRI
and a reference template. Our first imaging-genetic dataset combining our genomic features with imaging features
computed as the trimmed mean (10%) of the voxel Jacobians in 38 cortical and subcortical regions defined as part
of the Freesurfer atlas. Our second dataset combines the genomic features with summary quartile (Q1, Q2, Q3)
measures of the Jacobian distribution of a subset of 17 structures.

We applied our method to predict AVLT 1 for both datasets. Similar RMSE prediction errors were are achieved
(Fig. 1), though the best anatomical region identification occurred using quartile measures. The anatomical regions
assigned high importance are shown in Fig. 2 and Fig. 3. Importances for the individual SNP R and Θ components
are shown in Fig. 4 and Fig. 5. The results from our approach show promising capabilities for sparse feature selection
and prediction, We look forward to applying it to additional datatsets and extending its capabilities.
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Features Trimmed mean Quartiles
Imaging-Genetics 4.86 4.47

Imaging 4.49 4.46
Genetics 4.56 4.53

Figure 1: Regression performance measured as root mean square error using 4-fold cross-validation. In terms of
RMSE, both trimmed mean and quartiles give similarly good performance.
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Figure 2: Automatically assigned region importances in green for AVLT prediction on ICBM template using quartile
Jacobian measures. (a) Sagittal highlights hippocampus in center, while axial, coronal views (b,c) highlight hip-
pocampus, inferior and superior temporal regions. (asymmetry from training on different structures per hemisphere.)
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Figure 3: Importances for the imaging regions. Using trimmed mean of log Jacobian (a) yields only temporal region
with high importance while using quartile measures (b) assigns high importance to hippocampus and temporal regions.

Figure 4: SNP importances for the genomic R measure.

Figure 5: SNP importances for the genomic Θ measure.


