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Abstract. This work addresses the challenging problem of segmenting the 
lungs in CT scans. We propose the context selective decision forest (CSDF) as 
a new discriminative classifier which augments the state of the art entangled 
decision forest, resulting in higher prediction accuracy and greater 
generalization for the clinic. Our main contribution is two-fold. First we 
propose to select the context used for each organ to that context which tends to 
be present in clinical scans. Second we propose to selectively add labels to our 
ground truth training data such that the classifier will learn a distinctive 
appearance and spatial location model for each class. This enables more 
effective use of context and improves segmentation accuracy. We assess our 
probabilistic segmentation technique using our labeled database of 110 subjects, 
and the LOLA11 database of 55 subjects with varying pathology. Quantitative 
comparisons with state of the art algorithms demonstrate comparable accuracy 
with superior computational efficiency.  
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1   Introduction 

     Accurate lung segmentation in computed tomography (CT) is an important task 
that is not well solved. CT tends to be the modality of choice because of its high 
resolution and good signal to noise ratio. Accurate segmentation enables the detection 
and quantification of lung abnormalities and lung properties including: interstitial 
lung disease, emphysema, nodule detection, and lung volume estimation. Due to the 
importance of this task, it has received significant attention in the research 
community, however most methods developed to date do not meet the requirements 
for clinical adoption. Routine clinical use demands a method which: provides a very 
accurate segmentation, that requires little time to generate (e.g. seconds not hours), 
works across the variety of CT protocols used in the clinic, handles the variety of 
pathologies observed in the clinic, and is fully automated thus producing a 
segmentation which is not dependent on operator skill. 
     The existing approaches can be broadly grouped into four categories: conventional 
or rule based methods, atlas segmentation methods, model based methods, and 
supervised voxel classification methods. Rule based methods, such as [1], apply a 
sequence of ad hoc heuristics. They typically use one or more fixed thresholds, user 
selected seed points (e.g. in main bronchi) followed by region growing, connected 
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component labeling and morphological operations to fill in holes in the segmentation 
from dense pathology in the otherwise low density lung parenchyma. Due to the 
simple nature of the rules, conventional methods tend to be fast, requiring only one or 
two minutes to segment the lungs on a modern desktop, yet they are also brittle. They 
can fail to segment large portions of the lungs or the lungs entirely [2] depending on 
how early in the rigid sequence of steps, the anatomy violates the assumptions of the 
heuristics  
     Atlas based methods, such as [3], align a manually segmented reference scan to a 
novel test scan in order to transfer the manual segmentation from the source to the 
target. These methods tend to employ similarity metrics, such as mutual information, 
to allow alignment despite slight differences in scan protocol. These methods are less 
brittle than conventional methods because they nearly always produce some 
physiologically plausible segmentation, and they tend to include more lung pathology 
in the lungs. However, when only one atlas is used, the segmentation is biased to the 
anatomy of the reference subject. To overcome these problems, multi-atlas methods 
have been introduced, as in [2], which align multiple manually segmented scans to the 
test scan. Each provides a predicted voxel label which are integrated, for example, by 
maximum vote. Through bias reduction, the multi-atlas methods tend to outperform 
single atlas. However, since each atlas is individually registered, the methods can be 
slow, requiring two hours to segment a single scan. In addition, the atlases do not tend 
to agree well at lung borders yielding performance there below that of even the 
conventional methods.  
     Model based methods fit a probabilistic lung model to the likely lung location. 
Various methods to construct the lung model have been proposed. In [4], an active 
shape model is fit to the image, and the final boundary is refined through graph 
optimization. The method requires the corresponding left or right mean shape model 
to be manually placed in each individual data set to segment that lung. The authors 
report that an additional limitation is its reliance on images acquired at total lung 
capacity. In [5], a probabilistic shape model is constructed via PPCA, and then the 
model is fit to the image based on the predictions of the voxel classification method 
whose limitations we uncover and resolve in this paper.  
     Supervised voxel classification methods use a training database of lung scans with 
each voxel assigned an anatomical class label, such as left lung or right lung, to build 
an oracle which predicts the most likely label at each voxel in a novel test scan. In [6], 
a voxel classifier called the Entangled Decision Forest (EDF) was proposed and 
applied to segment 12 organs in volumetric CT scans including the lungs. The method 
is fast, segmenting the CT data in less than one minute on a standard high end 
desktop. However, the EDF uses semantic context that may not be present in the data 
at the clinic, in which case performance can be suboptimal.  
     In this paper, we propose the context selective decision forest (CSDF) which 
improves the EDF by regulating the use of context. We show how this extension 
improves test accuracy. The two main contributions are as follows.  First, to regulate 
the incorporation of context, we restrict it to that part of the large field of view 
training scans which are apt to be present in scans observed in the clinic. Since we 
have the lung labels for the training data, we can do this in an automated fashion. 
Second, we add new labels to the training data to force the classifier to learn to label 
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more structures. This decreases the overlap of the learned appearance of neighboring 
structures, lessoning their confusion and improving overall segmentation accuracy.  

2   Materials  

2.1 Training and cross-validation database  

To train our method and to quantitatively evaluate it via cross-validation, we use a 
database which consists of 110 large field of view CT scans in which each voxel has 
an intensity and is manually assigned one of 3 labels {non-lung, left lung, right lung 
}. The database includes a wide range of pathologies as well as healthy subjects. All 
major scanner vendors and a range of image acquisition protocols including contrast 
and non-contrast are represented. Also included is a range of ages, weights, heights 
and both genders. 

2.2 LOLA11 database 

We also evaluate our method on a separate database called the LOLA 2011 lung 
segmentation challenge database [7]. This database consists of 55 CT scans 
containing only the thoracic region. Each voxel has an intensity, however ground 
truth is not provided.  We use this database: (1) to qualitatively evaluate the 
generalization ability of our method, and (2) to provide an independent, quantitative 
assessment of its performance as measured by the challenge organizers. 

3   Methods 

3.1 Decision forest background 

We begin with a brief review of randomized decision forests [8,9]. A decision forest 
is an ensemble of T decision trees. During training, the data (Fig. 1), consists of the 
set of data points from all training images, 

1{ , }N
i iS v l� . Each data point, si, consists of 

the voxel position, vi, and its label, li. Tree ti receives the full set S, and its root node 
selects a test to split S into two subsets to maximize information gain. A test consists 
of a feature (e.g. an image feature) and a feature response threshold.  The left and 
right child nodes receive their respective subsets of S and the process is repeated at 
each child node to grow the next level of the tree. Growth stops when one or more 
stopping criteria, such as minimal information gain or a maximum tree depth occur. 
Each tree is unique because each tree node selects a random subset of the features and 
thresholds to try. During testing, the data (Fig. 1) consists of the voxel positions in a 
test image. The voxels are routed to one leaf in each tree by applying the test (selected 
during training) which is stored in each node. The test is applied to the voxel in the 
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Fig. 1. Decision forest overview. During training, multiple trees are grown, using all 
training data for each tree. During testing, to classify a voxel, it is initialized at the 
root node of each tree, and recursively sent left or right (red arrows) according to 
binary tests stored at each node. The voxel is classified using the average of the T 
posterior label distributions, with one coming from the leaf reached in each of the T 
trees. 
 
test image. The test result guides the voxel to the left or right child node, and this is 
repeated until a leaf node is reached. An empirical distribution over classes learned 
from the training data is stored at each leaf.  The voxel is classified by averaging the 
class distributions from the set of leaves it reached.  The following section describes  
the features we use to define the node tests of our decision forest.  

3.2 Context rich, long-range visual features 

It has been shown [10] that to classify a voxel at a given location anatomical context 
from regions up to 200mm away are often very helpful. Therefore, we do not use 
traditional features such as Haar wavelets whose range is too short. Instead we 
construct two types of long-range, context-rich features. The first capture “appearance 
context”, the latter capture “semantic context” [6]. This will be explained next.  

Appearance context features. We construct intensity features that can be computed 
in constant time regardless of size, using an integral image. They are spatially defined 
by (1) their position, x, centered on the voxel to be labeled (Fig. 2a), and (2) one or 
two rectangular probe regions, R1 and R2, offset from x by displacements ∆1 and ∆2 
which can be up to 200mm in each dimension (x,y,z). We construct two categories of 
intensity features. The first category consists of the mean CT intensity at a probed 
region, R1 (Fig 2a, left), while the second consists of the difference in the mean 
intensity at probed regions, R1 and R2 (Fig 2a, right). These are defined as follows:  

� � � �� �; ,Intensityf I� �1 1 1 1x Δ R R x Δ       (1) 

� � � �� � � �� �2 2; , , ,IntensityDifff I I� � � �1 1 2 2 1 1x Δ R Δ R R x Δ R x Δ     (2) 

During training, the features to try at each node are parameterized by dimensions of 
R1 and R2, offsets ∆1 and ∆2 and an intensity threshold α. These parameters are 
chosen randomly to define the intensity test: (.)f �� . Once training has finished, the  

-204- LOLA11 Challenge



  b  c     

Fig. 2. Intensity and MAPClass features. (a) Intensity features measure image 
information from regions offset from the voxel to classify at x. (b) MAPClass feature 
retrieves the label that the classifier currently predicts at location P1 offset from x. 
Implementation-wise, we maintain a node index array which associates with each 
voxel the current tree node ID (represented by the number in each voxel). (c, top) This 
allows us to determine the current label posterior in the tree for the voxel at location 
P1. (c, bottom) Conceptually, the tree induces a vector image of class posteriors which 
we used when developing the MAPClass and TopNClasses features.  
 
max information gain node test along with its optimal features are frozen and stored 
within the node for later use during testing. 

Semantic context entanglement features. During testing on novel images, we 
exploit the confident voxel label predictions (peaked distributions) that can be found 
using just early levels of the forest to aid the labelling of nearby voxels. This provides 
semantic context similar to auto-context [11,12], but does so within the same forest. 
We define four types of long range entanglement features to help train the node 
currently being grown using knowledge learned in already trained split nodes of the 
forest. Two features (MAPClass and TopNClasses) are based on the posterior 
class distribution of the nodes corresponding to probed voxels, and two 
(NodeDescendant and AncestorNodePair) are based on the location of the 
nodes within the trees. 
     We construct MAPClass entanglement features which use the maximum a 
posteriori label of a neighboring voxel at P1 in order to reduce uncertainty about the 
label at x (Fig 2b). When such semantic context is helpful to classify the voxel at x, 
the feature yields high information gain and may become the winning feature for the 
node during tree growth. MAPClass tests whether the MAP class in the posterior of 
a probed voxel 1 1P = x +Δ  is equal to a particular class, C:  

arg max ( ; ) 1
( ; , , )

otherwise 0
MAPClass

c
p c n C

f C
�	
� �


�

1p

1 1x Δ P                              (3) 

where ( ; )p c n
1p  

is the posterior class distribution of the node of P1.  This posterior can 
be retrieved from the tree because we (1) train and test voxels in breadth first fashion 
and (2) maintain an association between voxels and the tree node ID at which they 
reside while moving down the tree. This association is a node index array (Fig 2b).  
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3.3 Context selectivity  

     In this section we describe our first contribution. Context selectivity is the 
embedding of prior knowledge about the variability of scan protocols used in the 
clinic in the training of the classifier. For any organ, O, denote the set of anatomical 
structures located within a small distance d from O’s boundary as A. A subset of the 
structures in A, denoted as Aincl,  are apt to be present in clinical scans and should be 
included as potential sources of context for the classifier to segment O. Meanwhile 
the residual set, Aexcl ={ A - Aincl } though located within the same distance d from O 
may not always be included in clinical scans and thus should be excluded as a source 
of context for the classifier to segment O. Therefore even though all of A may be 
present in a training database, restricting what context is used for each organ to Aincl 
makes the training more generalizable to scans observed in the clinic. There are many 
ways in which this general, yet powerful, idea can be applied. Consider for example 
the LOLA11 challenge database in which the lung scans cover only the lungs and few 
if any structures (e.g. liver , neck) inferior or superior to the lungs. Directional 
anisotropy in the use of context can be imposed during training by making the context 
unavailable (constant “zero” feature response) beyond a small margin of slices 
(~5mm) inferior and superior to the extent of the lungs in the z (through image plane) 
direction. Such context selectivity is organ dependent and can be imposed on the 
training because we have the ground truth voxel labels for the training data. The 
constant zero feature response for unavailable context (Aexcl) will not yield any 
information gain and therefore the classifier will choose features from Aincl over Aexcl.  

3.4 Add labels to refine context and improve classification  

     In this section we describe our second contribution. For the EDF, the learned 
model of an anatomical structure (its signature) consists of the learned appearance and 
appearance variation throughout the structure, the learned appearance of neighboring 
structures, and the learned probabilistic shape of the structure [6]. Adding labels to the 
ground truth forces the classifier to label more classes. Rather than making the 
classification task harder, it can actually make the classification easier and more 
accurate when labels are added that split a given label into two or more sub-labels 
each of which having sharper intensity and location probability distribution functions. 
This general idea can be applied for lung segmentation. For example Fig. 3a shows a 
ground truth labeling overlaid on an intensity image. This example shows the original 
ground truth labeling with 3 labeled “structures”: the right lung (green), left lung 
(blue) and non-lung which is rendered transparently so as to show the underlying 
intensity image. The non-lung class contains both voxels in the body which are non-
lung as well as voxels exterior to the body. Splitting the non-lung label into two 
labels: “exterior to the body” and “body, non-lung” replaces the non-lung model that 
has bright and dark intensities and large spatial extent, with two more distinctive  
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Fig. 3: Ground truth labels in our database. (a) 3 labels: right lung (green), left lung 
(blue) and non-lung (transparent) and (b) 4 labels: right lung (green), left lung (blue), 
“exterior to the body” (yellow) and “body, non-lung” (transparent). 
 
classes. The “exterior to the body” class is composed almost entirely of dark pixels 
located far from the lungs, while “body, non-lung” class is almost entirely bright and 
near the lungs. For lung segmentation, the additional labels decrease the overlap of 
the learned appearance of neighboring structures to the lungs: “body, non-lung” is 
nearby but brighter, “exterior to the body” is similar in appearance but far away. This 
lessens confusion and improves overall segmentation accuracy. 

3.5 Relabeling and our overall algorithm  

An additional benefit of adding labels is that it makes error correction simple and 
efficient. For example when a small number of voxels are labeled “exterior to the 
body” yet are surrounded by the lung labels (Fig 4, column 3), then these noisy voxel 
labels can be effectively cleaned up by relabeling them as the closest lung label (Fig 4 
column 4). We employ a simple iterative relabeling scheme with a maximum of 20 
iterations and stop relabeling when the number of relabeled voxels in an iteration 
reaches zero or stops decreasing.  
     The overall steps of our algorithm are as follows:  

1) Preprocessing: normalize intensities to Hounsfield units, normalization of 
one orientation “degree of freedom”: upside down or not using image tags 

2) Training the context selective decision forest (CSDF) on the training data  
3) Applying CSDF to the test data  
4) Relabeling  

4   Results 

4.1 Qualitative results including the impact of each of our contributions 

     The classifier modifications proposed in this paper enable the classifier to 
achieve a visually accurate segmentation of organs throughout the 55 test volumes in  
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Fig. 4.  Effect of our contributions on the LOLA11 database. (Columns 1,2) Training 
with selective context (column 2) provides marked improvement over free ranging 
context (column 1) when scans have limited FOV. (Columns 2,3) Training with the 
body exterior labeled separately (column 3) allows the classifier to segment a much 
greater extent of the lungs than when exterior and body share the same label (column 
2). (Columns 3,4) Relabeling exterior labels in the body as the closest lung improves 
the final segmentation (column 4). 

the LOLA11 database. When we train an EDF classifier on the 110 subjects in our 
own database using unregulated context, the classifier chooses context which tends to 
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be beyond the range of the FOV of the scans in the LOLA11 database. For example, 
appearance and semantic context from structures superior to the lungs (parts of the 
neck and head) and inferior to the lungs (parts of the liver and spleen) are used. By 
restricting the slice range of the scan that the classifier may use for context in each 
training scan, the classifier instead chooses context in the center of the thoracic region 
(heart), anterior (chest wall) and posterior (back, spine). This context is readily 
available in both our database and in the LOLA11 database. As a result, the 
performance in the LOLA11 database is greatly improved. In Fig. 4, column 1 shows 
the decidedly poor segmentation using unregulated context; while column 2 shows the 
performance improvement for 3 different subjects. While this performance is better 
there are still regions where lungs segmentation can be improved (e.g. superior lung 
subject 12). Splitting the non-lung class into “body non-lung” and “body exterior” 
provides yet another level of marked performance improvement. This can be seen by 
comparing the segmentations in column 2 and 3. The most similar appearing label to 
the lungs is the air filled “body exterior”, but the classifier learns it has a spatially 
distinct location from the lungs. Our last contribution is to re-label the few “exterior 
non-lung” voxels that are connected to a lung as the closest lung. Column 4 shows the 
accurate segmentation result after relabeling.  
     As a segmentation challenge database, LOLA11 contains a wide range of 
pathologies that can cause many other segmentation algorithms difficulties. Our 
method handles the challenges well. Fig. 5 illustrates how the method accurately 
segments lungs despite large variations in shape and scale, including gross lung 
deformity (Subject 5), underdeveloped lungs or pathology affecting one lung 
(Subjects 44, 20), and very large lungs (Subject 37). Fig. 6 shows how the CSDF also 
segments several types of dense pathology in the lung properly, including diffusive 
dense pathology (yellow circled region in Subject 31). In (Subject 24), a small amount 
of dense pathology is omitted but could be included using standard techniques, such 
morphological operations for 3D hole filling and costal surface convexity detection 
and filling via convex hull as presented in [2]. 

4.2 Quantitative results  

     For a quantitative analysis, first, we measured the CSDF segmentation accuracy 
across our 110 subject labeled database using 5 fold cross validation and the overlap 
percentage, which is 100 times the average class Jaccard similarity coefficient [13]. 
The metric is the ratio of the intersection size (of ground truth and predicted labels) 
divided by the size of their union. This metric has been used widely in the literature 
and can be mathematically converted into the Dice coefficient.    
     Table 1 shows the overlap percentage for the left and right lungs for four variations 
of the CSDF method. The first row shows the accuracy when we restrict context by 
using only appearance context but not semantic context features (section 3.2). In the 
second row, we see the improvement for both lungs when we allow semantic context 
(entanglement) features. In the third row, we add the “body exterior” label and  
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Fig. 5. Our method handles large variations in shape and scale. (LOLA11 Subject 5) 
Accurate lung segmentation despite gross lung deformity. (Subjects 44, 20) Lungs are 
properly segmented even when one lung is underdeveloped, while our method also 
automatically handles very large lungs as in (Subject 37).  

Fig. 6. Several types of dense pathology in the lung are properly segmented. 
(LOLA11 Subject 31) Diffusive dense pathology (yellow circled region) is accurately 
included in the lung. (Subject 24) Some dense pathology is omitted but could be 
included using standard techniques.  

observe another improvement in the overlap percentages for both lungs. Finally, we 
modify the CSDF by training at 4x downsampling rather than 8x (typical setting). 
This improves the overlap to 94.6% (right lung) and 94.0% (left lung)..  
     Second, our segmentations on the 55 subjects in the LOLA11 Challenge were 
independently evaluated by the challenge organizers. Our method achieved a similarly 
high overlap of 95.1% (right lung) and 95.2% (left lung) as shown in Table 2. 

4.3 Efficiency considerations  

     The parallel implementation of our voxel classification based method segments 
both lungs simultaneously in 43 seconds per volume, where a typical volume is  
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Experiment 
Jaccard Overlap Percentage 

Right Lung Left Lung 
No Body Exterior label 
No semantic context features 93.70 92.76 

No Body Exterior label 
With semantic context features 93.74 92.94 

With Body Exterior label 
With semantic context features 94.17 93.17 

With Body Exterior label 
With semantic context features 
Training at 4x 

94.56 94.02 

Table 1. Lung segmentation results for 4 experiments from 5 fold cross-validation in 
our 110 subject database. Best accuracy in bold. (rows 1,2) Entanglement [6] 
improves segmentation accuracy. (Rows 2,3) Adding the body exterior label further 
improves accuracy over entanglement. (Rows 3,4) Training at 4x downsampling 
rather than 8x further improves accuracy for both left and right lungs.  

 
Organ mean SD min Q1 median Q3 Max 
L lung 0.952   0.117   0.116   0.965   0.974   0.978   0.987 
R Lung 0.951   0.132   0   0.964   0.974   0.977   0.987 
Table 2. Results of lung segmentation for the 55 scans in LOLA11. Accuracy is 
measured using the Jaccard overlap (multiply by 100 for %). Overall score is 0.952 
 
256x256x250 (after 2x downsampling in each dimension) using a standard Intel Xeon 
2.4GHz computer (8 core) with 16GB RAM running Win7 x64. A very good, coarse 
labeling (after 8x downsampling) can be achieved in 1.7 seconds. Training on the 110 
volumes, which need only be done once, requires 8 hours for 8 trees to depth 21.  

5   Discussion 

Our fully automated quantitative results in 43 seconds with an overlap percentage 
in excess of 94% compare favorably with those reported in the literature. [5] reports 
an overlap percentage of 74%  (Dice index of 0.85).  The atlas method in [3] yields an 
overlap percentage of 82%, while the region growing method in [1] yields 88.5%. In 
[4] the model based method yields an overlap accuracy of 94% (Dice 0.97) on a 
database with 10 subjects. However this method requires user input to position the left 
and right lung model on each individual image. Run time is roughly 4 minutes to 
segment both lungs. A hybrid conventional+multi-atlas method [2] yielded 95% 
overlap however the method’s run time is quite variable requiring between 1 minute 
and 2 hours per subject using 2x downsampled volumes. 

Currently a limitation of the CSDF is suboptimal performance on small diameter 
DFOV reconstructed images. A potential solution is to re-use our selective context 
idea (section 3) to limit the context used by the decision forest in the training data to 
exclude regions outside the cylinder that just encloses the lungs in the training data,  
because these regions are not reconstructed in small diameter DFOV images. 
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6  Conclusions 

     In conclusion, in [6] we showed that using semantic context improves 
segmentation. Here we show that regulated use of context provides even better 
results. When the use of context is regulated, such as when it is restricted to that part 
of the training scans which are apt to be present in scans observed in the clinic, then 
the classification results improve dramatically as they did for the LOLA11 database 
(Fig. 4).  We also show how adding labels that force the classifier to label more 
structures can decrease the overlap of the learned appearance of neighboring 
structures, lessen their confusion and thereby improve segmentation accuracy. Lastly, 
we showed that for lung segmentation, relabeling is a simple but effective approach 
for improving lung segmentation (Fig. 4). 
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