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Abstract. We develop a novel deformable atlas method for multi-
structure segmentation that seamlessly combines the advantages of
image-based and atlas-based methods. The method formulates a proba-
bilistic framework that combines prior anatomical knowledge with image-
based cues that are specific to the subject’s anatomy, and solves it using
expectation-maximization method. It improves the segmentation over
conventional label fusion methods especially around the structure bound-
aries, and is robust to large anatomical variation. The proposed method
was applied to segment multiple structures in both normal and dis-
eased brains and was shown to significantly improve results especially in
diseased brains.
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1 Introduction

Segmenting multiple structures from medical images remains a difficult task due
to the large variability of structure shape, their appearance in images, and the
lack of contrast between neighboring structures. One can roughly divide existing
segmentation methods into two categories: image-based approaches and atlas-
based approaches.

Image-based approaches are based on image cues, e.g., intensity, gradient,
texture. Among them deformable models, i.e., active contour [1] and level set
methods [2], have been widely adopted and shown success on many applications.
Atlas-based approaches [3, 4] rely largely on the prior knowledge about the spa-
tial arrangement of structures. They are generally performed by first registering
atlas images to the subject image, called target, so that the manual segmenta-
tions on the atlases are propagated and fused to segment the target. Compared
to image-based approaches, these methods incorporate prior anatomical knowl-
edge, but they do not explicitly consider images cues and thus are limited by
large anatomical variation and imperfect registration. Recently methods were
developed to incorporate image information into atlas-based approach[5–7], but
image cues other than intensity were not exploited. To the best of our knowledge,
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Fig. 1. Multi-structure segmentation using deformable atlas approach

the only work that attempted to close the gap between image-based and atlas-
based methods is spectral label fusion [8]. However the method is region-based
and it is difficult to extend to multiple structures especially when the boundaries
between neighboring structures are weak.

In this paper we develop a novel multi-structure segmentation method, called
deformable atlas, that seamlessly combines the advantages of image-based and
atlas-based methods. The method formulates and solves a probabilistic frame-
work that incorporates prior anatomical knowledge with image cues that are spe-
cific to the target images, including structure intensity profiles and boundaries.
Significant improvements were demonstrated over common label fusion methods
on the multi-structure segmentation of both normal and diseased brains.

2 Methods

Fig. 1 shows the flowchart of multi-structure segmentation using deformable
atlas (DA) method. DA accepts as inputs the target image and spatial priors
about the structures. The spatial priors can be generated using either a multi-
atlas approach or a spatial probabilistic atlas. After that, DA segments the multi
structures simultaneously. Consider a target image I, where Ij is the intensity
at voxel j with j ∈ {1, 2, ..., J}. Let K be the number of structures or labels.
The true label is represented by zj = [zj1, ..., zjK ], where zjk = 1 if j belongs to
structure k, and 0 otherwise. The label spatial prior is f(zj) = pj = [pj1, ..., pjK ].

In a multi-atlas approach, pjk = 1
N

∑N
n=1 L

n
jk with Ln

jk being the propagated

label at j from the nth atlas and N being the number of atlases. In a probabilistic
atlas approach, pj is the propagated spatial prior after registration. Let θ =
{ρ,π} be the set of unknown parameters, where ρ = {ρ1, ...ρK} are the intensity
distribution functions for the K structures, and π = {πjk} with πjk being the

probability that voxel j belongs to structure k and
∑K

k=1 πjk = 1 for all j.
The deformable atlas method employs a maximum likelihood estimation

(MLE) framework that combines label spatial prior knowledge with image-based
cues, i.e., intensities and edges to improve the multi-structure segmentation. Us-
ing Bayes’ law, the likelihood function is expressed as f(Z, I|θ) =

f(I|Z, θ)f(Z|θ) ∝ f(I|Z,ρ)f(I|Z,π)f(Z|θ) ∝ f(I|Z,ρ)f(π|I)f(Z|π) (1)
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Fig. 2. Example of the speed function. (a) A skull-striped brain T1 MR image, and
(b) the magnitude of GVF.

with the assumptions that ρ and π are independent, Z and ρ are independent,
and I and Z are conditionally independent given π. The term f(I|Z,ρ) is based
on the structure intensity profiles in the target image, while f(π|I) models the
distribution of π given I and is defined based on structure boundaries (described
below). We then develop an Expectation-Maximization(EM) algorithm to solve
for θ, which iterates between the E-step and the M-step.

2.1 The Probability f(ππ|I)
While most label fusion approaches do not explicitly explore structure boundary
information, image-based methods have shown that structure boundaries are
crucial for accurate segmentation. Here we conceptually define the log probability
as

log f(π|I) = logCe−γ
∑K

k=1 FI(Sk) = logC − γ

K∑

k=1

FI(Sk) , (2)

where FI(Sk) is a potential energy function defined on the boundaries Sk of the
kth structure segmented based on π, which typically takes local minimum at
edges along structure contours. C is a normalization constant.

In classic deformable models FI(Sk) often does not have an analytical form
and minimizing it does not lead to a closed-form solution. Instead, it is optimized
iteratively by either guiding the contour deformation using force fields in active
contours [1], or evolving the level set function using speed functions in level
set methods [9]. Inspired by that, we define pseudo level set functions φjk =
πjk − ∑

i�=k πji, which are similar to standard level set functions except their
values are constrained to [−1, 1]. φjk ∈ (0, 1] when i is inside structure k, and
φjk ∈ [−1, 0) if i is outside structure k. As in level set methods, the evolution of
φ(j) to maximize Eqn. (2) can be expressed as φs+1

jk − φs
jk = −γvj · ∇φjk , with

vj being a speed function, and s being the evolution step. It is equivalent to

πs+1
jk − πs

jk = −γvj · ∇πkj (3)

under the condition that
∑K

k=1 πjk = 1. We use the gradient vector flow
(GVF) [10] as the speed function, because it has been shown to be more flexible
and provide stronger constraints than many other forces or speed functions [10].
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Here we compute it from the magnitude of target image gradient ||∇xI|| instead
of binary edge map, i.e., vj = GV F{∇||∇xIj ||} An example is shown in Fig. 2.

A notable advantage of this formulation is πjk only evolves in regions where
their labels are ambiguous based on spatial priors. For regions with definite
labels, the term ∇πkj in Eqn. (3) equals 0 and thus πjk does not evolve.

2.2 The E-Step

In the E-step, the conditional expectation of the log likelihood function is com-
puted. Let θ(t) be the set of estimated parameters at iteration t. As in standard
EM algorithm, the conditional expectation is

Q(θ|θ(t)) = E{log f(I|Z,ρ)f(Z|π)}+ log f(π|I) (4)

=
∑

Z

[log f(I|Z,ρ)f(Z|π)] f(Z|I, θ(t)) + log f(π|I)

Using Bayes’ law and assuming the labels and intensities at voxels are indepen-
dently distributed we have

f(Z|I, θ(t)) =
f(I|Z, θ(t))f(Z)

∑
Z′ f(I|Z′, θ(t))f(Z′)

=

∏
j

∏
k[f(Ij |zjk, θ(t))pjk]

zjk

∑
Z′

∏
j

∏
k[f(Ij |z′jk, θ(t))pjk]

z′
jk

. (5)

Thus at each voxel j we have

w
(t)
jk = f(zjk = 1|I, θ(t)) =

f(Ij |zjk = 1, θ(t))pjk
∑K

k′=1 f(Ij |zjk′ = 1, θ(t))pjk′
, (6)

and wjk is referred as the weighting variable. ρ
(t)
k (Ij) = f(Ij |zjk = 1, θ(t)) is the

intensity distribution for structure k. Eqn. (4) can be expressed as

Q(θ|θ(t)) =
∑

j

∑

k

[log f(Ij |zjk = 1, ρk)f(zjk = 1|πjk)]w
(t)
jk + log f(π|I)

=
∑

j

∑

k

w
(t)
jk log ρk(Ij) +

∑

j

∑

k

w
(t)
jk log πjk + log f(π|I) . (7)

2.3 The M-Step

In the M-step, the parameters θ(t+1) are computed by maximizing Q(θ|θ(t)).
To estimate ρ, we model the intensity distribution using Parzen window

method, i.e., ρk(x) =
∑

j akjG(x; Ij , σ), where G(·; Ij , σ) is the Gaussian ker-
nel with mean Im and standard deviation σ. akj are the coefficients such that∑

j akj = 1. By maximizing Eqn. (7) it is derived that

ρ
(t+1)
k = argmax

ρk

∑

j

w
(t)
jk log ρk(Ij) =

1
∑

j′ w
(t)
j′k

∑

j

w
(t)
jk G(x; Ij , σ) , (8)

or a
(t+1)
kj = w

(t)
jk /

∑
j′k w

(t)
j′k.
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Fig. 3. Results on two IBSR subjects. (a) T1-weighted coronal slices, (b) ground truth,
the results of (c) MV, (d) IWV, and (e) DA methods. The improvements of DA are
highlighted using circles.

To etimate π, based on Eqn. (7) we have

π(t+1) = argmax
π

∑

j

∑

k

w
(t)
jk log πjk + log f(π|I) (9)

with the constraints
∑

k πjk = 1 for all j, or cj(πj1, ..., πjK) = 1−∑
k πjk = 0. As

defined earlier, the term log f(π|I) does not have an analytical form and thus
Eqn. (9) does not have a closed-form solution. Instead we solve it iteratively
using extended gradient descent method [11]. Let πj = [πj1, ..., πjK ]T , and we

denote the gradient as g(πj) = ∇πj
Q(θ|θ(t)) = [g(πj1), ..., g(πjK)]T , such that

g(πjk) =
∂Q(θ|θ(t))

∂πjk
=

w
(t)
jk

πjk
− γvj · ∇πkj . (10)

Because of the constraints, g(πjk) needs to be projected onto the constrained

space [11], i.e., gN (πk) = g(πk)− ∇cj ·g(πk)
||g(πk)||2 ∇cj , or equivalently,

gN(πjk) = g(πjk)−
K∑

k=1

g(πjk)/K . (11)

At iteration s, π
(t+1)s+1
jk is updated as

π
(t+1)s+1
jk − π

(t+1)s
jk = δ gN(π

(t+1)s
jk ) , (12)

where δ is the small step size, and π
(t+1)0
jk = π

(t)
jk . After that π

(t+1)s+1
jk is nor-

malized to satisfy the constraint that
∑

k π
(t+1)s+1
jk = 1.

The complete deformable atlas algorithm is summarized in Algorithm 1.

3 Experiments and Results

Experiments were first performed using the Internet Brain Segmentation Repos-
itory (IBSR) data set1. It contains 18 healthy subjects with T1 weighted images,

1 Provided by the Center for Morphometric Analysis at Massachusetts General Hos-
pital and available at http://www.cma.mgh.harvard.edu/ibsr/

http://www.cma.mgh.harvard.edu/ibsr/
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Data: Target image I, prior spatial probability pj

Initialization : Set maximum iterations T and S, set t = 0, w
(0)
jk = π

(0)
jk = pjk ;

Compute vj using GVF and ρ
(0)
k using Eqn. (8) ;

repeat

The E-Step: compute w
(t)
jk as in Eqn. (6);

The M-Step: compute ρ
(t+1)
k using (8), set s=0, π

(t+1)0
jk = w

(t)
jk ;

repeat

Compute π
(t+1)s+1
jk using Eqn. (12) ;

Normalize π
(t+1)s+1
jk = π

(t+1)s+1
jk /

∑K
k′=1 π

(t+1)s+1
jk′ ;

s=s+1;

until it converges or s > S;

zjk = 1 if π
(t+1)
jk > π

(t+1)
ji for all i �= k, otherwise zjk = 0 ;

t=t+1 ;

until the algorithm converges or t > T ;

Algorithm 1. The deformable atlas algorithm

and 32 brain structures were manually delineated on each image by experts. We
also tested on Alzheimer’s disease brains using the Australian Imaging, Biomark-
ers and Lifestyle (AIBL) data sets. For comparison, experiments were performed
using three methods: majority voting (MV), intensity weighted voting (IWV),
and DA. For MV, the segmentation was determined by fusing propagated label
maps without considering image cues [3], i.e., j was labeled as k if pjk > pji for
∀i �= k. IWV improves MV by considering structure-specific intensity profiles,
i.e., the intensity weighting f(I|Z, ρ) in Eqn. (1) was applied but the term for
structure boundary f(π|I) was ignored. For DA, both the intensity weighting
and the structure boundary term were applied. The parameters were empiri-
cally selected: γ = 0.5 and δ = 0.05. σ in Eqn. (8) was chosen as the intensity
standard deviation of all voxels in each structure. In all experiments, the image
registration was performed using SyN method [12].

For IBSR data, 18 leave-one-out experiments were performed using a multi-
atlas approach. The segmentation results were compared to the manual segmen-

tation and evaluated using the Dice coefficient, i.e., D = 2|X∩Y |
|X∪Y | where X and

y are the voxel sets of manual labeling and automated segmentation result, re-
spectively, and | · | is the set cardinality. Fig. 3 shows the qualitative results
on two data sets, and Fig. 4 shows the quantitative results for all structures.
Left and right structures are combined for clarity, and results on vessels were
not shown. It was observed that IWV performed much better than MV in most
structures, which demonstrated the effectiveness of incorporating intensity into
the voting strategy. DA further improved the results especially in the ventricles
and the cortex, and worked sightly better or similarly on other structures. The
DA results are comparable to or better than state-of-the-art brain segmentation
algorithms as shown in [13].

We also tested the methods on 45 AIBL images on Alzheimer’s disease using
the multi-atlas approach with the 18 IBSR data as the atlases, and the re-
sults were visually inspected. Fig. 5 shows the results on three selected subjects.
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Fig. 4. The mean Dice coefficients of the three methods on different brain structures

(a) (b) (c) (d)

Fig. 5. Results on three AIBL images. (a) The T1-weighted images, the results of (b)
MV, (c) IWV, and (d) DA methods. The major differences are highlighted using circles
and arrows.

It was found that DA consistently worked much better than MV and IWV. This
was because the diseased brains have large anatomical changes as compared to
normal brains, e.g., brain tissue shrinkage and ventricle enlargement. Since the
atlas images were all on normal brains, these pathological differences were not
captured by the registration algorithm and resulted in failure of MV and IWV
on certain parts of the brain (circled regions in Fig. 5). DA worked very well
despite the anatomical changes thanks to the edge-based deformation. These re-
sults showed that deformable atlas could be successfully applied to brains with
large deformation that could not be handled by voting based methods.
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4 Discussions

We developed a deformable atlas method for multi-structure segmentation that
combines the benefits of atlas-based and image-based approaches, and applied
it to segment both normal brains and brains with Alzheimer’s disease. Results
showed that the method performed very well especially for diseased brain in spite
of large anatomical deformation while other segmentation methods failed. The
method can be readily extended to other applications of atlas-based segmen-
tation, e.g., prostate and heart. Though only demonstrated using a multi-atlas
approach, the method can equally be applied to probabilistic atlas approaches.
Part of our future work is to include other speed functions, including curvature-
based terms for smoothness, to get better segmentation results.
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